14 resultados para Anorogenic
Resumo:
The significance of the Brianconnais domain in the Alpine orogen is reviewed in the light of data concerning its collision with the active Adriatic margin and the passive Helvetic margin. The Brianconnais which formerly belonged to the Iberian plate, was located on the northern margin of the Alpine Tethys (Liguro-Piemont ocean) since its opening in the early-Middle Jurassic. Together with the Iberian plate the Brianconnais terrane was separated from the European plate in the Late Jurassic-Early Cretaceous, following the northern Atlantic, Bay of Biscay, Valais ocean opening. This was accompanied by the onset of subduction along the northern margin of Adria and the closure of the Alpine Tethys. Stratigraphic and metamorphic data regarding this subduction and the geohistory of the Brianconnais allows the scenario of subduction-obduction processes during the Late Cretaceous-early Tertiary in the eastern and western Alps to be specified. HP-LT metamorphism record a long-lasting history of oceanic subduction-accretion, followed in the Middle Eocene by the incorporation of the Brianconnais as an exotic terrane into the accretionary prism. Middle to Late Eocene cooling ages of the Brianconnais basement and the presence of pelagic, anorogenic sedimentation lasting until the Middle Eocene on the Brianconnais preclude any sort of collision before that time between this domain and the active Adria margin or the Helvetic margin. This is confirmed by plate reconstructions constrained by magnetic anomalies in the Atlantic domain. Only a small percentage of the former Brianconnais domain was obducted, most of the crust and lithospheric roots were subducted. This applies also to domains formerly belonging to the southern Alpine Tethys margin (Austroalpine-inner Carpathian domain). It is proposed that there was a single Palaeogene subduction zone responsible for the Alpine orogen formation (from northern Spain to the East Carpathians), with the exception of a short-lived Late Cretaceous partial closure of the Valais ocean. Subduction in the western Tethyan domain originated during the closure of the Meliata ocean during the Jurassic incorporating the Austroalpine-Carpathian domain as terranes during the Cretaceous. The subduction zone propagated into the northern margin of Adria and then to the northern margin of the Iberian plate, where it gave birth to the Pyrenean-Provencal orogenic belt. This implies the absence of a separated Cretaceous subduction zone within the Austro-Carpathian Penninic ocean. Collision of Iberia with Europe forced the subduction to jump to the SE margin of Iberia in the Eocene, creating the Apenninic orogenic wedge and inverting the vergence of subduction from south- to north-directed. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
For the first time, an albite orthogneiss has been recognised and dated within the HP-LT blueschist facies metabasites and metapelites of the Ile de Groix. It is characterised by a peraluminous composition, high LILE, Th and U contents, MORB-like HREE abundances and moderate Nb and Y values. A U-Pb age of 480.8 +/- A 4.8 Ma was obtained by LA-ICP-MS dating of zircon and titanite. It is interpreted as the age of the magmatic emplacement during the Early Ordovician. Morphologically different zircon grains yield late Neoproterozoic ages of 546.6-647.4 Ma. Zircon and titanite U-Pb ages indicate that the felsic magmatism from the Ile de Groix is contemporaneous with the acid, pre-orogenic magmatism widely recognised in the internal zones of the Variscan belt, related to the Cambro-Ordovician continental rifting. The magmatic protolith probably inherited a specific chemical composition from a combination of orogenic, back-arc and anorogenic signatures because of partial melting of the Cadomian basement during magma emplacement. Besides, the late Devonian U-Pb age of 366 +/- A 33 Ma obtained for titanite from a blueschist facies metapelite corresponds to the age of the HP-LT peak metamorphism.
Resumo:
The Thyon metagranite is located in the frontal part of the Siviez-Mischabel Nappe, in the western Penninic Alps. It is intrusive in a polymetamorphic banded volcanic complex as leucocratic concordant sills with pseudoaplitic rims. A distinct metamorphic schistosity is defined by dark-green Fe-rich biotite. Abundant mesoperthites, chess-board albite and low microcline are presumably related to magmatic stages and/or greenschist-facies metamorphic retrogression. Major, trace element and REE geochemistry, zircon typology, Y and Nb-bearing accessory minerals such as fergusonite and euxenite, all point to a metaluminous to peraluminous alkaline A-type granite. High-precision U-Pb zircon dating yielded a sub-concordant age of 500 +3/-4 Ma. The Thyon metagranite is the third record of a Cambro-Ordovician alkaline magmatic activity in the Alps. As A-type granitic magmatism is common in post-orogenic to anorogenic extensional tectonic regime, the Thyon intrusion could mark the transition between the Cadomian and the Caledonian orogenies.
Resumo:
The Sunsas-Aguapei province (1.20-0.95 Ga), SW Amazonian Craton, is a key area to study the heterogeneous effects of collisional events with Laurentia, which shows evidence of the Grenvillian and Sunsas orogens. The Sunsas orogen, characterized by an allochthonous collisional-type belt (1.11-1.00 Ga), is the youngest and southwestern most of the events recorded along the cratonic fringe. Its evolution occurred after a period of long quiescence and erosion of the already cratonized provinces (>1.30 Ga), that led to sedimentation of the Sunsas and Vibosi groups in a passive margin setting. The passive margin stage was roughly contemporary with intraplate tectonics that produced the Nova Brasilandia proto-oceanic basin (<1.21 Ga), the reactivation of the Ji-Parana shear zone network (1.18-1.12 Ga) and a system of aborted rifts that evolved to the Huanchaca-Aguapei basin (1.17-1.15 Ga). The Sunsas belt is comprised by the metamorphosed Sunsas and Vibosi sequences, the Rincon del Tigre mafic-ultramafic sill and granitic intrusive suites. The latter rocks yield epsilon(Nd(t)) signatures (-0.5 to -4.5) and geochemistry (S,1, A-types) suggesting their origin associated with a continental arc setting. The Sunsas belt evolution is marked by ""tectonic fronts"" with sinistral offsets that was active from c. 1.08 to 1.05 Ga, along the southern edge of the Paragua microcontinent where K/Ar ages (1.27-1.34 Ga) and the Huanchaca-Aguapei flat-lying cover attest to the earliest tectonic stability at the time of the orogen. The Sunsas dynamics is coeval with inboard crustal shortening, transpression and magmatism in the Nova Brasilandia belt (1.13-1.00 Ga). Conversely, the Aguapei aulacogen (0.96-0.91 Ga) and nearby shear zones (0.93-0.91 Ga) are the late tectonic offshoots over the cratonic margin. The post-tectonic to anorogenic stages took place after ca. 1.00 Ga, evidenced by the occurrences of intra-plate A-type granites, pegmatites, mafic dikes and sills, as well as of graben basins. Integrated interpretation of the available data related to the Sunsas orogen supports the idea that the main nucleus of Rodinia incorporated the terrains forming the SW corner of Amazonia and most of the Grenvillian margin, as a result of two independent collisional events, as indicated in the Amazon region by the Ji-Parana shear zone event and the Sunsas belt, respectively. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The results of geological mapping, chemical analysis and radiometric dating of metabasic rocks of Betara Formation, and mapping and dating of those present in the Betara basement nucleus together with mylonitic granodiorite and syenogranite are reported here. U-Pb analysis of bulk zircon fractions from the metabasic rocks of the basement nucleus yielded a Statherian age of 1790 +/- 22 Ma, while the metabasic rocks from the upper part of the Betara Formation yielded a Calymmian age between 1500 and 1450 Ma. This age is a minimum for the deposition of the Betara Formation. The older metabasic rocks are associated with post-tectonic, possibly anorogenic syenogranite, while the younger ones are gabbro or very porphyritic ankaramite whose REE patterns are consistent with crystallization from an N-MORB parent magma. The observations and data point to the probable events associated with extensional processes of the end of Paleoproterozoic and early Mesoproterozoic. Similar registers of Statherian (1.80-1.75 Ga) and Calymmian (1.50-1.45 Ga) extensional events are recorded in other parts of the South American and African continents. The Neoproterozoic witnessed the formation and junction of the tectonic slices which formed the Apiai domain during the assemblage of western Gondwana. (C) 2010 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.
Resumo:
Rapakivi granites and associated mafic and ultramafic rocks in the Rondonia Tin Province, southwestern Amazonian craton, Brazil were emplaced during six discrete episodes of magmatism between ca 1600 and 970 Ma. The seven rapakivi granite suites emplaced at this time were the Serra da Providencia Intrusive Suite (U-Pb ages between 1606 and 1532 Ma); Santo Antonio Intrusive Suite(U-Pb age 1406 Ma), Teotonio Intrusive Suite (U-Pb age 1387 Ma); Alto Candeias Intrusive Suite (U-Pb ages between 1346 and 1338 Ma); Sao Lourenco-Caripunas Intrusive Suite (U-Pb ages between 1314 and 1309 Ma); Santa Clara Intrusive Suite (U-Pb ages between 1082 and 1074 Ma); and Younger Granites of Rondonia (U-Pb ages between 998 and 974 Ma). The Serra da Providencia Intrusive Suite intruded the Paleoproterozoic (1.80 to 1.70 Ga) Rio Negro-Juruena crust whereas the other suites were emplaced into the 1.50 to 1.30 Ga Rondonia-San Ignacio crust. Their intrusion was contemporaneous with orogenic activity in other parts of the southwestern Amazonian craton, except for the oldest, Serra da Providencia Intrusive Suite. Orogenic events coeval with emplacement of the Serra da Providencia Intrusive Suite are not clearly recognized in the region. The Santo Antonio, Teotonio, Alto Candeias and Sao Lourenco-Caripunas Intrusive Suites are interpreted to represent extensional anorogenic magmatism associated with the terminal stages of the Rondonian-San Ignacio orogeny. At least the Sao Lourenco-Caripunas rapakivi granites and coeval intra-continental rift sedimentary rocks may, in contrast, represent the products of extensional tectonics and rifting preceding the Sunsas/Aguapei orogeny (1.25 to 1.0 Ga). The two youngest rapakivi suites, the Santa Clara Intrusive Suite and Younger Granites of Rondonia, seemingly represent inboard magmatism in the Rondonian-San Ignacio Province during a younger episode of reworking in the Rio Negro-Juruena Province during the waning stages of the collisional 1.1 to 1.0 Ga Sunsas/Aguapei orogeny. The six intra-plate rapakivi granite episodes in the southwestern part of the Amazonian craton form three broad periods of anorogenic magmatism that have age-correlative events composed of similar rocks and geologic environments in eastern Laurentia and Baltica, although the exact timing of magmatism appears slightly different. Recognition of lithologic and chronological correlations between various cratons provide important constraints to models explaining the interplay between rapakivi granite magmatism and deep crustal evolution of an early Mesoproterozoic supercontinent. They are, furthermore, important to plate tectonic models for the assembly, dispersal and reassembly of Amazonia, Laurentia and Baltica in the Mesoproterozoic and Neoproterozoic. (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
The Rio Branco Rapakivi Batholith belongs to the Cachoeirinha Tectonic Domain, part of the Rio Negro-Juruena Geochronological Province located on the southwestern portion of the Amazonian Craton in Mato Grosso, Central Brasil. A systematic geological mapping on a 1:100.000 scale, coupled with petrographic and geochemical studies allowed to redefine this batholithic unit, to recognize faciological variations and to characterize the geochemical features of this rapakivi magmatism. The batholith is constituted by two major plutonic suites, the first forming a basic suite of fine-grained, equigranular, mesoto melanocratic gray to black lithotypes, with usually discontinuous porphyritic varieties located near the margins of the intrusion. The second one is characterized by acid to intermediate rocks constituted by porphyritic granites, in part granophyric, with rapakivi textures. They have K-feldspar phenocrysts of up to 4cm. Three distinct petrographic facies are recognized in this suite: 1. equigranular to pegmatitic monzogranites; 2. red rapakivi leuco-monzogranites; 3. dark red rapakivi monzogranites to quartz-monzonites. Rocks present SiO2 contents from 67% to 73%, show peraluminous to metaluminous compositions and define a high-K calc-alkaline to shoshonitic magmatism in an I- and A-type, post-orogenic to anorogenic intraplate environment. The magmatic processes are associated with the end of the collisional event that consolidated and stabilized the SW part of the Amazonian Craton.
Resumo:
Rio Branco Rapakivi Batholith is located on the southwestern portion of the Amazonian Craton in Mato Grosso and belongs to the Cachoeirinha Tectonic Domain, part of the Rio Negro-Juruena Geochronological Province, Central Brasil. The batholith is constituted by microgabbros to quartz microgabbros and microdiorites to quartz microdiorites, middle to fine-grained equigranular to porphyritic varieties form the Rio Branco Intrusive Basic Suite, showing a discontinuous distribution and located near the margins of the intrusion.Majorly constituted by porphyritic, granophyric and isotropic facies of Rio Branco Intrusive Acid Suit which is composed by older dark red rapakivi monzogranites to quartz monzonites and quartz sienites (1403±0.6 Ma) and the younger red rapakivi leuco-monzogranites (1382±49 Ma) and late equigranular to pegmatitic monzogranites. The magmatism is constituted by two distinct magmas related to the end of the collisional event of Cachoeirinha Orogeny, one with alkaline basalts generated in an intraplate environment and the other postorogenic to anorogenic with peraluminous to metaluminous compositions and define a high-K calc-alkaline to shoshonitic magmatism in transition among the I- and A-types. The contacts are marked by extensive mafic sills and dikes of alkaline basalts derived from intraplate environment of the Salto do Céu Intrusive Basic Suite (±808 Ma) associate to the Sunsás-Aguapei Orogenic Belt and metasedimentary rocks of the Aguapeí Grup.
Resumo:
O Granito São João (GSJ) é um batólito anorogênico de formato circular, com aproximadamente 160 km² de área, que secciona unidades arqueanas pertencentes ao Terreno Granito-Greenstone de Rio Maria, sudeste do Cráton Amazônico. É constituído dominantemente por quatro fácies petrográficas distintas: biotita-anfibólio monzogranito (BAMG), biotita-anfibólio sienogranito (BASG), anfibólio-biotita monzogranito a sienogranito (ABMSG) e biotita monzogranito a sienogranito (BMSG). O GSJ possui natureza metaluminosa a fracamente peraluminosa, razões FeOt/(FeOt+MgO) entre 0,94 e 0,99 e K2O/Na2O entre 1 e 2, mostra afinidades geoquímicas com granitos intraplaca do tipo A, subtipo A2 e granitos ferrosos, sugerindo uma fonte crustal para sua origem. O GSJ possui conteúdos de ETRL mais elevados que os ETRP e um padrão sub-horizontalizado para esses últimos, além de anomalias negativas de Eu crescentes no sentido das rochas menos evoluídas para as mais evoluídas (BAMG → BASG→ ABMSG→ BMSG). Os dados de suscetibilidade permitiram identificar seis populações com diferentes características magnéticas, onde os valores mais elevados de SM relacionam-se às fácies menos evoluídas e os mais baixos às mais evoluídas. O estudo comparativo entre o GSJ e as suítes graníticas da Província Carajás mostra que ele apresenta maiores semelhanças geológicas, petrográficas, geoquímicas e de SM com os granitos que formam a Suíte Serra dos Carajás, podendo ser enquadrado na mesma.
Resumo:
Eight Mesoproterozoic granite suites are recognized in the Rondônia Tin Province, called Serra da Providência Intrusive Suite (1606-1532 Ma), Rio Crespo Intrusive Suite (1500 Ma), St. Anthony Intrusive Suite (1406 Ma), Teotonio Intrusive Suite (1387 Ma ), Santa Clara Intrusive Suite (1082-1074 Ma) and Younger Granites of Rondônia Intrusive Suite (998-974 Ma), represent successive magmatic type A (anorogenic) and the intra-plate basement rocks intruded in the metamorphic complex named Jamari separated into two distinct lithologic associations, a ortogneiss (U-Pb from 1.76 to 1.73 Ga) and a paragneiss (1675 + / - 12 Ma). Tin mineralization are widely found in the Tin Province and are associated with granitic intrusions known Mesoproterozoic more closely with the last two magmatic events, represented by the Santa Clara and Younger Granites of Rondônia. The tin mineralization are of primary and secondary, with the primary form deposits of different structural styles and is presented in the form of endo-or exogreisens, veins, stockworks and pegmatites. The secondary mineralization are related to natural processes of weathering and erosion of primary rocks, leading to placer deposits classified as colluvial, eluvial and colluvial-alluvial. The Target Alvo Sol Nascente is located in the central-eastern Rondônia Tin Province and has basement rocks of the metamorphic-magmatic region represented by Jamari Complex intrusive suites and Sierra Providence and Rio Crespo. The last tectonic event spa in the area was responsible for the intrusion of Younger Granites of Rondônia (São Carlos and Caripuanã Massifis). The anomalous levels of tin, sufficient to operate (Mina Rising Sun), indicate that there was possibly mineralization event, evidenced by pegmatite veins well defined, easily found relatively close to mine. Plaque deposits associated with Quaternary sedimentary sequences can also be observed
Resumo:
The granitic massif Capão Bonito is located in the southwest of the State of São Paulo and is associated with Neoproterozoic evolution of Central Mantiqueira Province. Its rocks outcrop along the edge of the Paraná Basin in a body with elongated shape whose major axis has a general NE-SW, covering an area of approximately 110km2. Occurs in intrusive epimetamorphic rocks of Votuverava Formation, Acungui Group and granitic rocks of the Três Córregos Complex and their placement is related to a brittle tectonics of NE-SW direction shear zones. In metasediments, when preserved from deformational features imposed by mylonitic deformation, preserve up textures and mineralogy of contact metamorphism with development of mineral in albite-epidote and hornblende hornfels facies. The Massif Capão Bonito consists of red syenogranites, holo-leucocratic with biotite and rare hornblende, medium to coarse inequigranulars and isotropic lightly mylonitic and / or cataclastic in marginal regions. Commercially are called Vermelho Capão Bonito and for export as Ruby Red Granite. Rocks belonging to the calcium-alkaline high potassium to shoshonitic series or the series subalkaline potassic and metaluminous to peraluminous character. The magmatism is compatible with granite type A, tardi-orogenic to anorogenic of intraplate environment, from the crust material with lower melting emplacement associated with correlated transtensive structure to shear zones in an extensional environment at the end of collisional event of Orogênese Ribeira. Metamorphism occurred in the region in the greenschist facies, low to medium, generating quartzites, phyllites, schists, and calcium-silicate metabasics
Resumo:
The north-western sector of the Gharyan volcanic field (northern Libya) consists of trachytic-phonolitic domes emplaced between similar to 41 and 38 Ma, and small-volume mafic alkaline volcanic centres (basanites, tephrites. alkali basalts. hawaiites and rare benmoreites) of Middle Miocene-Pliocene age (similar to 12-2 Ma). Two types of trachytes and phonolites have been recognized on the basis of petrography, mineralogy and geochemistry. Type-1 trachytes and phonolites display a smooth spoon-shaped REE pattern without negative Europium anomalies. Type-2 trachytes and phonolites show a remarkable Eu negative anomaly, higher concentration in HFSE (Nb-Ta-Zr-Hf), REE and Ti than Type-1 rocks. The origin of Type-1 trachytes and phonolites is compatible with removal of clinopyroxene, plagioclase, alkali feldspar, amphibole. magnetite and titanite starting from benmoreitic magmas. found in the same outcrops. Type-2 trachytes and phonolites could be the result of extensive fractional crystallization starting from mafic alkaline magma, without removal of titanite. In primitive mantle-normalized diagrams, the mafic rocks (Mg#= 62-68, Cr up to 514 ppm, Ni up to 425 ppm) show peaks at Nb and Ta and troughs at K. These characteristics, coupled with low Sr-87/Sr-86(i) (0.7033-0.7038) and positive epsilon(Nd) (from +4.2 to + 5.3) features typical of the mafic anorogenic magmas of the northern African plate and of HIMU-OIB-like magma in general. The origin of the mafic rocks is compatible from a derivation from low degree partial melting (3-9%) shallow mantle sources in the spinel/gamet facies. placed just below the rigid plate in the uppermost low-velocity zone. The origin of the igneous activity is considered linked to passive lithospheric thinning related to the development of continental rifts like those of Sicily Channel (e.g.. Pantelleria and Linosa) and Sardinia (e.g., Campidano Graben) in the Central-Western Mediterranean Sea. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
We present field relationships, major and trace element geochemistry and U-Pb SHRIMP and ID-TIMS geochronology of the A-type Ordovician Quintas pluton located in the Ceara Central Domain of the Borborema Province, in northeastern Brazil. This pluton presents a concentric geometry and is composed mainly of syenogranite, monzogranite, quartz syenite to quartz monzodiorite, monzogabbro and diorite. Its geochemical characteristics [SiO2 (52-70%), Na2O/K2O (1.55-0.65), Fe2O3/MgO (2.2-7.3), metaluminous to sligthly alkaline affinity, post-collisional type in (Y + Nb) x Rb diagram, and A-type affinity (Ga > 22 ppm, Nb > 20 ppm, Zn > 60 ppm), REE fractioned pattern with negative Eu anomaly] are coherent with post-collisional A(2)-type granitoids. However, the emplacement of this pluton is to some extent temporally associated with the deposition of the first strata of the Parnaiba intracratonic basin, attesting also to a purely anorogenic character (A(1)-type granitoid). The emplacement of this pluton is preceded by one of the largest known orogenesis of the planet (Neoproterozoic Pan-African/Brasiliano) and, if it is classified as an A(2)-type granitoid, it provides interesting constraints about how long can last A(2)-type magmatic activity after a major collisional episode, arguably triggered by disturbance of the underlying mantle, a topic extensively debated in the geoscience community. (C) 2011 Elsevier Ltd. All rights reserved.