942 resultados para Anomalies in field and string theories
Resumo:
We compute the one-loop beta functions for the Type II superstring using the pure spinor formalism in a generic supergravity background. It is known that the classical pure spinor BRST symmetry puts the background fields on-shell. In this paper we show that the one-loop beta functions vanish as a consequence of the classical BRST symmetry of the action. © SISSA 2007.
Resumo:
We use the non-minimal pure spinor formalism to compute in a super-Poincare covariant manner the four-point massless one and two-loop open superstring amplitudes, and the gauge anomaly of the six-point one-loop amplitude. All of these amplitudes are expressed as integrals of ten-dimensional superfields in a pure spinor superspace which involves five theta coordinates covariantly contracted with three pure spinors. The bosonic contribution to these amplitudes agrees with the standard results, and we demonstrate identities which show how the t(8) and epsilon(10) tensors naturally emerge from integrals over pure spinor superspace.
Resumo:
Nilpotency of the pure spinor BRST operator in a curved background implies superspace equations of motion for the background. By computing one-loop corrections to nilpotency for the heterotic sigma model, the Yang-Mills Chern-Simons corrections to the background are derived. © 2008 SISSA.
Resumo:
We study the properties of walls of marginal stability for BPS decays in a class of N = 2 theories. These theories arise in N = 2 string compactifications obtained as freely acting orbifolds of N = 4 theories, such theories include the STU model and the FHSV model. The cross sections of these walls for a generic decay in the axion-dilaton plane reduce to lines or circles. From the continuity properties of walls of marginal stability we show that central charges of BPS states do not vanish in the interior of the moduli space. Given a charge vector of a BPS state corresponding to a large black hole in these theories, we show that all walls of marginal stability intersect at the same point in the lower half of the axion-dilaton plane. We isolate a class of decays whose walls of marginal stability always lie in a region bounded by walls formed by decays to small black holes. This enables us to isolate a region in moduli space for which no decays occur within this class. We then study entropy enigma decays for such models and show that for generic values of the moduli, that is when moduli are of order one compared to the charges, entropy enigma decays do not occur in these models.
Resumo:
The establishment of experimental populations of scarab larvae using eggs and early instar larvae has proven to be difficult for many researchers. Despite this, little work has been published examining ways to optimise establishment under artificial conditions. In this experiment, we examined the effect of shade and irrigation on the establishment of Heteronyx piceus Blanchard larvae introduced into pots as eggs and first-, second- and third-instar larvae to optimise artificial infestation techniques. The most important factor affecting larval establishment was the life stage introduced. Establishment of eggs and first instars was very low, with only 21% of eggs and 11% of first-instar larvae establishing. In contrast, 82% of second-instar larvae and 84% of third-instar larvae established successfully. The addition of shade marginally improved overall survival from 45% in the unshaded pots to 53% in the shaded pots. However, most of this increase was in the eggs and first instars. Irrigation did not improve survival. These results suggest that when introducing scarab larvae to field or pot experiments, second- or thirdinstar larvae should be used to maximise establishment. The provision of shade and supplementary irrigation is optional.
Resumo:
The paper showcases the field- and lab-documentation system developed for Kinneret Regional Project, an international archaeological expedition to the Northwestern shore of the Sea of Galilee (Israel) under the auspices of the University of Bern, the University of Helsinki, Leiden University and Wofford College. The core of the data management system is a fully relational, server-based database framework, which also includes time-based and static GIS services, stratigraphic analysis tools and fully indexed document/digital image archives. Data collection in the field is based on mobile, hand-held devices equipped with a custom-tailored stand-alone application. Comprehensive three-dimensional documentation of all finds and findings is achieved by means of total stations and/or high-precision GPS devices. All archaeological information retrieved in the field – including tachymetric data – is synched with the core system on the fly and thus immediately available for further processing in the field lab (within the local network) or for post-excavation analysis at remote institutions (via the WWW). Besides a short demonstration of the main functionalities, the paper also presents some of the key technologies used and illustrates usability aspects of the system’s individual components.
Resumo:
Mode of access: Internet.
Resumo:
The recent development of using negative stiffness inclusions to achieve extreme overall stiffness and mechanical damping of composite materials reveals a new avenue for constructing high performance materials. One of the negative stiffness sources can be obtained from phase transforming materials in the vicinity of their phase transition, as suggested by the Landau theory. To understand the underlying mechanism from a microscopic viewpoint, we theoretically analyze a 2D, nested triangular lattice cell with pre-chosen elements containing negative stiffness to demonstrate anomalies in overall stiffness and damping. Combining with current knowledge from continuum models, based on the composite theory, such as the Voigt, Reuss, and Hashin-Shtrikman model, we further explore the stability of the system with Lyapunov's indirect stability theorem. The evolution of the microstructure in terms of the discrete system is discussed. A potential application of the results presented here is to develop special thin films with unusual in-plane mechanical properties. © 2006 Elsevier B.V. All rights reserved.
Resumo:
Field and experimental studies were conducted to investigate pathological characterizations and biochemical responses in the liver and kidney of the phytoplanktivorous bighead carp after intraperitoneal (i.p.) administration of microcystins (MCs) and exposure to natural cyanobacterial blooms in Meiliang Bay, Lake Taihu. Bighead carp in field and laboratory studies showed a progressive recovery of structure and function in terms of histological, cellular, and biochemical features. In laboratory study, when fish were i.p. injected with extracted MCs at the doses of 200 and 500 mu g MC- LReq/kg body weight, respectively, liver pathology in bighead carp was observed in a time dose-dependent manner within 24 h postinjection and characterized by disruption of liver structure, condensed cytoplasm, and the appearance of massive hepatocytes with karyopyknosis, karyorrhexis, and karyolysis. In comparison with previous studies on other fish, bighead carp in field study endured higher MC doses and longer-term exposure, but displayed less damage in the liver and kidney. Ultrastructural examination in the liver revealed the presence of lysosome proliferation, suggesting that bighead carp might eliminate or lessen cell damage caused by MCs through lysosome activation. Biochemically, sensitive responses in the antioxidant enzymes and higher basal glutathione concentrations might be responsible for their powerful resistance to MCs, suggesting that bighead carp can be used as biomanipulation fish to counteract cyanotoxin contamination.
Resumo:
The 5th International Conference on Field and Service Robotics (FSR05) was held in Port Douglas, Australia, on 29th - 31st July 2005, and brought together the worlds' leading experts in field and service automation. The goal of the conference was to report and encourage the latest research and practical results towards the use of field and service robotics in the community with particular focus on proven technology. The conference provided a forum for researchers, professionals and robot manufacturers to exchange up-to-date technical knowledge and experience. Field robots are robots which operate in outdoor, complex, and dynamic environments. Service robots are those that work closely with humans, with particular applications involving indoor and structured environments. There are a wide range of topics presented in this issue on field and service robots including: Agricultural and Forestry Robotics, Mining and Exploration Robots, Robots for Construction, Security & Defence Robots, Cleaning Robots, Autonomous Underwater Vehicles and Autonomous Flying Robots. This meeting was the fifth in the series and brings FSR back to Australia where it was first held. FSR has been held every 2 years, starting with Canberra 1997, followed by Pittsburgh 1999, Helsinki 2001 and Lake Yamanaka 2003.
Resumo:
Temperature and magnetic field studies of the elastic constants of the chromium spinel CdCr2O4 show pronounced anomalies related to strong spin-phonon coupling in this frustrated antiferromagnet. A detailed comparison of the longitudinal acoustic mode propagating along the 111] direction with a theory based on an exchange-striction mechanism leads to an estimate of the strength of the magnetoelastic interaction. The derived spin-phonon coupling constant is in good agreement with previous determinations based on infrared absorption. Further insight is gained from intermediate and high magnetic field experiments in the field regime of the magnetization plateau. The role of the antisymmetric Dzyaloshinskii-Moriya interaction is discussed.
Resumo:
In the quest for a descriptive theory of decision-making, the rational actor model in economics imposes rather unrealistic expectations and abilities on human decision makers. The further we move from idealized scenarios, such as perfectly competitive markets, and ambitiously extend the reach of the theory to describe everyday decision making situations, the less sense these assumptions make. Behavioural economics has instead proposed models based on assumptions that are more psychologically realistic, with the aim of gaining more precision and descriptive power. Increased psychological realism, however, comes at the cost of a greater number of parameters and model complexity. Now there are a plethora of models, based on different assumptions, applicable in differing contextual settings, and selecting the right model to use tends to be an ad-hoc process. In this thesis, we develop optimal experimental design methods and evaluate different behavioral theories against evidence from lab and field experiments.
We look at evidence from controlled laboratory experiments. Subjects are presented with choices between monetary gambles or lotteries. Different decision-making theories evaluate the choices differently and would make distinct predictions about the subjects' choices. Theories whose predictions are inconsistent with the actual choices can be systematically eliminated. Behavioural theories can have multiple parameters requiring complex experimental designs with a very large number of possible choice tests. This imposes computational and economic constraints on using classical experimental design methods. We develop a methodology of adaptive tests: Bayesian Rapid Optimal Adaptive Designs (BROAD) that sequentially chooses the "most informative" test at each stage, and based on the response updates its posterior beliefs over the theories, which informs the next most informative test to run. BROAD utilizes the Equivalent Class Edge Cutting (EC2) criteria to select tests. We prove that the EC2 criteria is adaptively submodular, which allows us to prove theoretical guarantees against the Bayes-optimal testing sequence even in the presence of noisy responses. In simulated ground-truth experiments, we find that the EC2 criteria recovers the true hypotheses with significantly fewer tests than more widely used criteria such as Information Gain and Generalized Binary Search. We show, theoretically as well as experimentally, that surprisingly these popular criteria can perform poorly in the presence of noise, or subject errors. Furthermore, we use the adaptive submodular property of EC2 to implement an accelerated greedy version of BROAD which leads to orders of magnitude speedup over other methods.
We use BROAD to perform two experiments. First, we compare the main classes of theories for decision-making under risk, namely: expected value, prospect theory, constant relative risk aversion (CRRA) and moments models. Subjects are given an initial endowment, and sequentially presented choices between two lotteries, with the possibility of losses. The lotteries are selected using BROAD, and 57 subjects from Caltech and UCLA are incentivized by randomly realizing one of the lotteries chosen. Aggregate posterior probabilities over the theories show limited evidence in favour of CRRA and moments' models. Classifying the subjects into types showed that most subjects are described by prospect theory, followed by expected value. Adaptive experimental design raises the possibility that subjects could engage in strategic manipulation, i.e. subjects could mask their true preferences and choose differently in order to obtain more favourable tests in later rounds thereby increasing their payoffs. We pay close attention to this problem; strategic manipulation is ruled out since it is infeasible in practice, and also since we do not find any signatures of it in our data.
In the second experiment, we compare the main theories of time preference: exponential discounting, hyperbolic discounting, "present bias" models: quasi-hyperbolic (α, β) discounting and fixed cost discounting, and generalized-hyperbolic discounting. 40 subjects from UCLA were given choices between 2 options: a smaller but more immediate payoff versus a larger but later payoff. We found very limited evidence for present bias models and hyperbolic discounting, and most subjects were classified as generalized hyperbolic discounting types, followed by exponential discounting.
In these models the passage of time is linear. We instead consider a psychological model where the perception of time is subjective. We prove that when the biological (subjective) time is positively dependent, it gives rise to hyperbolic discounting and temporal choice inconsistency.
We also test the predictions of behavioral theories in the "wild". We pay attention to prospect theory, which emerged as the dominant theory in our lab experiments of risky choice. Loss aversion and reference dependence predicts that consumers will behave in a uniquely distinct way than the standard rational model predicts. Specifically, loss aversion predicts that when an item is being offered at a discount, the demand for it will be greater than that explained by its price elasticity. Even more importantly, when the item is no longer discounted, demand for its close substitute would increase excessively. We tested this prediction using a discrete choice model with loss-averse utility function on data from a large eCommerce retailer. Not only did we identify loss aversion, but we also found that the effect decreased with consumers' experience. We outline the policy implications that consumer loss aversion entails, and strategies for competitive pricing.
In future work, BROAD can be widely applicable for testing different behavioural models, e.g. in social preference and game theory, and in different contextual settings. Additional measurements beyond choice data, including biological measurements such as skin conductance, can be used to more rapidly eliminate hypothesis and speed up model comparison. Discrete choice models also provide a framework for testing behavioural models with field data, and encourage combined lab-field experiments.