908 resultados para Ankle-Foot Orthosis
Resumo:
Computer modeling is a perspective method for optimal design of prosthesis and orthoses. The study is oriented to develop modular ankle foot orthosis (MAFO) to assist the very frequently observed gait abnormalities relating the human ankle-foot complex using CAD modeling. The main goal is to assist the ankle- foot flexors and extensors during the gait cycle (stance and swing) using torsion spring. Utilizing 3D modeling and animating open source software (Blender 3D), it is possible to generate artificially different kind of normal and abnormal gaits and investigate and adjust the assistive modular spring driven ankle foot orthosis.
Resumo:
During locomotion, turning is a common and recurring event which is largely neglected in the current state-of-the-art ankle-foot prostheses, forcing amputees to use different steering mechanisms for turning, compared to non-amputees. A better understanding of the complexities surrounding lower limb prostheses will lead to increased health and well-being of amputees. The aim of this research is to develop a steerable ankle-foot prosthesis that mimics the human ankle mechanical properties. Experiments were developed to estimate the mechanical impedance of the ankle and the ankles angles during straight walk and step turn. Next, this information was used in the design of a prototype, powered steerable ankle-foot prosthesis with two controllable degrees of freedom. One of the possible approaches in design of the prosthetic robots is to use the human joints’ parameters, especially their impedance. A series of experiments were conducted to estimate the stochastic mechanical impedance of the human ankle when muscles were fully relaxed and co-contracting antagonistically. A rehabilitation robot for the ankle, Anklebot, was employed to provide torque perturbations to the ankle. The experiments were performed in two different configurations, one with relaxed muscles, and one with 10% of maximum voluntary contraction (MVC). Surface electromyography (sEMG) was used to monitor muscle activation levels and these sEMG signals were displayed to subjects who attempted to maintain them constant. Time histories of ankle torques and angles in the lateral/medial (LM) directions, inversion-eversion (IE), and dorsiflexionplantarflexion (DP) were recorded. Linear time-invariant transfer functions between the measured torques and angles were estimated providing an estimate of ankle mechanical impedance. High coherence was observed over a frequency range up to 30 Hz. The main effect of muscle activation was to increase the magnitude of ankle mechanical impedance in all degrees of freedom of the ankle. Another experiment compared the three-dimensional angles of the ankle during step turn and straight walking. These angles were measured to be used for developing the control strategy of the ankle-foot prosthesis. An infrared camera system was used to track the trajectories and angles of the foot and leg. The combined phases of heel strike and loading response, mid stance, and terminal stance and pre-swing were determined and used to measure the average angles at each combined phase. The Range of motion (ROM) in IE increased during turning while ML rotation decreased and DP changed the least. During the turning step, ankle displacement in DP started with similar angles to straight walk and progressively showed less plantarflexion. In IE, the ankle showed increased inversion leaning the body toward the inside of the turn. ML rotation initiated with an increased medial rotation during the step turn relative to the straight walk transitioning to increased lateral rotation at the toe off. A prototype ankle-foot prosthesis capable of controlling both DP and IE using a cable driven mechanism was developed and assessed as part of a feasibility study. The design is capable of reproducing the angles required for straight walk and step turn; generates 712N of lifting force in plantarflexion, and shows passive stiffness comparable to a nonload bearing ankle impedance. To evaluate the performance of the ankle-foot prosthesis, a circular treadmill was developed to mimic human gait during steering. Preliminary results show that the device can appropriately simulate human gait with loading and unloading the ankle joint during the gait in circular paths.
Resumo:
A dynamical systems approach to the study of locomotor intralimb coordination in those with hemiparesis led to an examination of the utility of the shank-thigh relative phase (RP) as a collective variable and the identification of potential constraints that may shape this coordination. Eighteen non-disabled individuals formed three groups matched to the age and gender of six participants with chronic right hemiparesis. The three groups differed in the constraints imposed on their walking: (1) walking at their preferred walking speed; (2) walking as slowly as those with hemiparesis; and, (3) walking slowly with a right ankle-foot orthosis (AFO). The results revealed an asymmetry in intralimb coordination between the unaffected and affected leg of those with hemiparesis localized to the latter third of the gait cycle when the limb is advanced from the end of stance to the reestablishment of a new stance. Walking slowly with or without an AFO resulted in no measureable effect in the non-disabled, but accounts for 22% of the variance in the intralimb coordination of the hemiplegic's affected limb and 16% in the unaffected limb. The AFO offered little additional contribution. These results derive from shank-thigh RP that is shown to provide more information about intralimb coordination than knee angle displacement. Implications for these results and the use of RP for rehabilitation are discussed. (C) 2000 Elsevier B.V. B.V. All rights reserved. PsycINFO classification. 3297. 2330.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The treatment of the Cerebral Palsy (CP) is considered as the “core problem” for the whole field of the pediatric rehabilitation. The reason why this pathology has such a primary role, can be ascribed to two main aspects. First of all CP is the form of disability most frequent in childhood (one new case per 500 birth alive, (1)), secondarily the functional recovery of the “spastic” child is, historically, the clinical field in which the majority of the therapeutic methods and techniques (physiotherapy, orthotic, pharmacologic, orthopedic-surgical, neurosurgical) were first applied and tested. The currently accepted definition of CP – Group of disorders of the development of movement and posture causing activity limitation (2) – is the result of a recent update by the World Health Organization to the language of the International Classification of Functioning Disability and Health, from the original proposal of Ingram – A persistent but not unchangeable disorder of posture and movement – dated 1955 (3). This definition considers CP as a permanent ailment, i.e. a “fixed” condition, that however can be modified both functionally and structurally by means of child spontaneous evolution and treatments carried out during childhood. The lesion that causes the palsy, happens in a structurally immature brain in the pre-, peri- or post-birth period (but only during the firsts months of life). The most frequent causes of CP are: prematurity, insufficient cerebral perfusion, arterial haemorrhage, venous infarction, hypoxia caused by various origin (for example from the ingestion of amniotic liquid), malnutrition, infection and maternal or fetal poisoning. In addition to these causes, traumas and malformations have to be included. The lesion, whether focused or spread over the nervous system, impairs the whole functioning of the Central Nervous System (CNS). As a consequence, they affect the construction of the adaptive functions (4), first of all posture control, locomotion and manipulation. The palsy itself does not vary over time, however it assumes an unavoidable “evolutionary” feature when during growth the child is requested to meet new and different needs through the construction of new and different functions. It is essential to consider that clinically CP is not only a direct expression of structural impairment, that is of etiology, pathogenesis and lesion timing, but it is mainly the manifestation of the path followed by the CNS to “re”-construct the adaptive functions “despite” the presence of the damage. “Palsy” is “the form of the function that is implemented by an individual whose CNS has been damaged in order to satisfy the demands coming from the environment” (4). Therefore it is only possible to establish general relations between lesion site, nature and size, and palsy and recovery processes. It is quite common to observe that children with very similar neuroimaging can have very different clinical manifestations of CP and, on the other hand, children with very similar motor behaviors can have completely different lesion histories. A very clear example of this is represented by hemiplegic forms, which show bilateral hemispheric lesions in a high percentage of cases. The first section of this thesis is aimed at guiding the interpretation of CP. First of all the issue of the detection of the palsy is treated from historical viewpoint. Consequently, an extended analysis of the current definition of CP, as internationally accepted, is provided. The definition is then outlined in terms of a space dimension and then of a time dimension, hence it is highlighted where this definition is unacceptably lacking. The last part of the first section further stresses the importance of shifting from the traditional concept of CP as a palsy of development (defect analysis) towards the notion of development of palsy, i.e., as the product of the relationship that the individual however tries to dynamically build with the surrounding environment (resource semeiotics) starting and growing from a different availability of resources, needs, dreams, rights and duties (4). In the scientific and clinic community no common classification system of CP has so far been universally accepted. Besides, no standard operative method or technique have been acknowledged to effectively assess the different disabilities and impairments exhibited by children with CP. CP is still “an artificial concept, comprising several causes and clinical syndromes that have been grouped together for a convenience of management” (5). The lack of standard and common protocols able to effectively diagnose the palsy, and as a consequence to establish specific treatments and prognosis, is mainly because of the difficulty to elevate this field to a level based on scientific evidence. A solution aimed at overcoming the current incomplete treatment of CP children is represented by the clinical systematic adoption of objective tools able to measure motor defects and movement impairments. A widespread application of reliable instruments and techniques able to objectively evaluate both the form of the palsy (diagnosis) and the efficacy of the treatments provided (prognosis), constitutes a valuable method able to validate care protocols, establish the efficacy of classification systems and assess the validity of definitions. Since the ‘80s, instruments specifically oriented to the analysis of the human movement have been advantageously designed and applied in the context of CP with the aim of measuring motor deficits and, especially, gait deviations. The gait analysis (GA) technique has been increasingly used over the years to assess, analyze, classify, and support the process of clinical decisions making, allowing for a complete investigation of gait with an increased temporal and spatial resolution. GA has provided a basis for improving the outcome of surgical and nonsurgical treatments and for introducing a new modus operandi in the identification of defects and functional adaptations to the musculoskeletal disorders. Historically, the first laboratories set up for gait analysis developed their own protocol (set of procedures for data collection and for data reduction) independently, according to performances of the technologies available at that time. In particular, the stereophotogrammetric systems mainly based on optoelectronic technology, soon became a gold-standard for motion analysis. They have been successfully applied especially for scientific purposes. Nowadays the optoelectronic systems have significantly improved their performances in term of spatial and temporal resolution, however many laboratories continue to use the protocols designed on the technology available in the ‘70s and now out-of-date. Furthermore, these protocols are not coherent both for the biomechanical models and for the adopted collection procedures. In spite of these differences, GA data are shared, exchanged and interpreted irrespectively to the adopted protocol without a full awareness to what extent these protocols are compatible and comparable with each other. Following the extraordinary advances in computer science and electronics, new systems for GA no longer based on optoelectronic technology, are now becoming available. They are the Inertial and Magnetic Measurement Systems (IMMSs), based on miniature MEMS (Microelectromechanical systems) inertial sensor technology. These systems are cost effective, wearable and fully portable motion analysis systems, these features gives IMMSs the potential to be used both outside specialized laboratories and to consecutive collect series of tens of gait cycles. The recognition and selection of the most representative gait cycle is then easier and more reliable especially in CP children, considering their relevant gait cycle variability. The second section of this thesis is focused on GA. In particular, it is firstly aimed at examining the differences among five most representative GA protocols in order to assess the state of the art with respect to the inter-protocol variability. The design of a new protocol is then proposed and presented with the aim of achieving gait analysis on CP children by means of IMMS. The protocol, named ‘Outwalk’, contains original and innovative solutions oriented at obtaining joint kinematic with calibration procedures extremely comfortable for the patients. The results of a first in-vivo validation of Outwalk on healthy subjects are then provided. In particular, this study was carried out by comparing Outwalk used in combination with an IMMS with respect to a reference protocol and an optoelectronic system. In order to set a more accurate and precise comparison of the systems and the protocols, ad hoc methods were designed and an original formulation of the statistical parameter coefficient of multiple correlation was developed and effectively applied. On the basis of the experimental design proposed for the validation on healthy subjects, a first assessment of Outwalk, together with an IMMS, was also carried out on CP children. The third section of this thesis is dedicated to the treatment of walking in CP children. Commonly prescribed treatments in addressing gait abnormalities in CP children include physical therapy, surgery (orthopedic and rhizotomy), and orthoses. The orthotic approach is conservative, being reversible, and widespread in many therapeutic regimes. Orthoses are used to improve the gait of children with CP, by preventing deformities, controlling joint position, and offering an effective lever for the ankle joint. Orthoses are prescribed for the additional aims of increasing walking speed, improving stability, preventing stumbling, and decreasing muscular fatigue. The ankle-foot orthosis (AFO), with a rigid ankle, are primarily designed to prevent equinus and other foot deformities with a positive effect also on more proximal joints. However, AFOs prevent the natural excursion of the tibio-tarsic joint during the second rocker, hence hampering the natural leaning progression of the whole body under the effect of the inertia (6). A new modular (submalleolar) astragalus-calcanear orthosis, named OMAC, has recently been proposed with the intention of substituting the prescription of AFOs in those CP children exhibiting a flat and valgus-pronated foot. The aim of this section is thus to present the mechanical and technical features of the OMAC by means of an accurate description of the device. In particular, the integral document of the deposited Italian patent, is provided. A preliminary validation of OMAC with respect to AFO is also reported as resulted from an experimental campaign on diplegic CP children, during a three month period, aimed at quantitatively assessing the benefit provided by the two orthoses on walking and at qualitatively evaluating the changes in the quality of life and motor abilities. As already stated, CP is universally considered as a persistent but not unchangeable disorder of posture and movement. Conversely to this definition, some clinicians (4) have recently pointed out that movement disorders may be primarily caused by the presence of perceptive disorders, where perception is not merely the acquisition of sensory information, but an active process aimed at guiding the execution of movements through the integration of sensory information properly representing the state of one’s body and of the environment. Children with perceptive impairments show an overall fear of moving and the onset of strongly unnatural walking schemes directly caused by the presence of perceptive system disorders. The fourth section of the thesis thus deals with accurately defining the perceptive impairment exhibited by diplegic CP children. A detailed description of the clinical signs revealing the presence of the perceptive impairment, and a classification scheme of the clinical aspects of perceptual disorders is provided. In the end, a functional reaching test is proposed as an instrumental test able to disclosure the perceptive impairment. References 1. Prevalence and characteristics of children with cerebral palsy in Europe. Dev Med Child Neurol. 2002 Set;44(9):633-640. 2. Bax M, Goldstein M, Rosenbaum P, Leviton A, Paneth N, Dan B, et al. Proposed definition and classification of cerebral palsy, April 2005. Dev Med Child Neurol. 2005 Ago;47(8):571-576. 3. Ingram TT. A study of cerebral palsy in the childhood population of Edinburgh. Arch. Dis. Child. 1955 Apr;30(150):85-98. 4. Ferrari A, Cioni G. The spastic forms of cerebral palsy : a guide to the assessment of adaptive functions. Milan: Springer; 2009. 5. Olney SJ, Wright MJ. Cerebral Palsy. Campbell S et al. Physical Therapy for Children. 2nd Ed. Philadelphia: Saunders. 2000;:533-570. 6. Desloovere K, Molenaers G, Van Gestel L, Huenaerts C, Van Campenhout A, Callewaert B, et al. How can push-off be preserved during use of an ankle foot orthosis in children with hemiplegia? A prospective controlled study. Gait Posture. 2006 Ott;24(2):142-151.
Resumo:
BACKGROUND Patients in whom conventional peroneal nerve repair surgery failed to reconstitute useful foot lift need to be evaluated for their suitability to undergo a concomitant tendon transfer procedure or nerve transfers. OBJECTIVE To report our first clinical experience with nerve transfers for persistent traumatic peroneal nerve palsy. METHODS Between 2007 and 2013, 8 patients were operated on for foot drop after unsuccessful nerve surgery. Six patients without fatty degeneration of the anterior tibial muscle and proximal lesion of the peroneal nerve were oriented for tibial to peroneal nerve transfer. In the other 2 cases where the anterior and lateral compartments were destructed, the anterior tibial muscle function was reconstructed with a neurotized lateral gastrocnemius transfer. For each patient, we graded postoperative results using the Bureau of Meteorology Research Centre scheme and the Ninkovic assessment scale. RESULTS Of the 6 patients who underwent nerve transfer of the anterior tibial muscle, 2 patients had excellent results, 1 patient had good results, 1 patient had fair results, and 2 patients had poor results. Of the 2 patients that underwent neurotized lateral gastrocnemius transfer, 1 patient achieved excellent results after tenolysis, whereas 1 patient achieved poor results. After the nerve transfer, 5 patients did not wear an ankle-foot orthosis. Four patients did not limp. Four patients were able to walk barefoot, navigate stairs, and participate in activities. CONCLUSION Early clinical results after tibial to peroneal nerve transfer and neurotized lateral gastrocnemius transfer appear mixed. The results of nerve transfer seem, on the whole, less reliable than the literature reports on tendon transfer. ABBREVIATIONS EMG, electromyographyNAP, nerve action potential.
Resumo:
O trabalho que se apresenta nesta dissertação pretende ser uma contribuição para o desenvolvimento de métodos de avaliação da recuperação da marcha em pacientes pós acidente vascular cerebral (AVC), envolvidos em programas de reabilitação e que sejam utilizadores de ortóteses tornozelo-pé (AFO – Ankle Foot Orthosis). A metodologia desenvolvida considera uma AFO em polipropileno (PP), que é instrumentada com uma unidade de medição inercial (UMI) e oito extensómetros elétricos de resistência. A UMI é fixa com uma tira elástica na posição do retro pé. Os dados recolhidos a partir da instrumentação são utilizados para monitorizar a marcha de doentes pós AVC, a partir do qual podem ser estimados diversos parâmetros espácio-temporais. Os sinais recolhidos nos extensómetros permitem a identificação dos eventos da marcha, necessários para a segmentação do sinal da aceleração, enquanto o sinal da aceleração do eixo horizontal da UMI, no plano sagital, garante a identificação da velocidade da marcha, tempo de apoio e comprimento do ciclo da marcha. Nos testes ao método desenvolvido foram utilizados dois voluntários: um indivíduo saudável e um paciente em recuperação pós AVC, tendo sido definido um protocolo de marcha com dez metros (10 MWT). Os dados recolhidos no indivíduo saudável foram enquadrados no padrão de referência. O paciente executou o protocolo antes e após tratamento com toxina botulínica (TB). Este estudo propõe a definição de um novo parâmetro, o índice de confiança ic, que avalia a confiança do sujeito espástico durante a marcha, com base na transferência do centro da gravidade do corpo na fase do balanço. O método Bland –Altman foi aplicado para validar o método da UMI de medição da velocidade de marcha, comparando com um método de referencia que utiliza medição temporal com cronómetro. A média das diferenças entre os dois métodos foi determinada junto aos limites de concordância. O t Student test permitiu a validação dos dados utilizados no cálculo do índice de confiança. A correlação forte entre as velocidades da marcha e os tempos de apoio e a cadência, fortalece a confiabilidade dos dados obtidos e dos parâmetros calculados utilizando os métodos desenvolvidos neste trabalho. Os resultados obtidos com a metodologia desenvolvida, que apresenta uma estratégia inovadora que recorre aos ângulos da orientação de uma UMI no plano sagital mostraram que é possível monitorizar a evolução dos doentes pós-AVC com recurso a uma AFO.
Resumo:
Introduction : Une proportion importante des individus ayant recours à des services de réadaptation physique vit avec de la douleur et des incapacités locomotrices. Plusieurs interventions proposées par les professionnels de la réadaptation afin de cibler leurs difficultés locomotrices nécessitent des apprentissages moteurs. Toutefois, très peu d’études ont évalué l’influence de la douleur sur l’apprentissage moteur et aucune n’a ciblé l’apprentissage d’une nouvelle tâche locomotrice. L’objectif de la thèse était d’évaluer l’influence de stimulations nociceptives cutanée et musculaire sur l’acquisition et la rétention d’une adaptation locomotrice. Méthodologie : Des individus en santé ont participé à des séances de laboratoire lors de deux journées consécutives. Lors de chaque séance, les participants devaient apprendre à marcher le plus normalement possible en présence d’un champ de force perturbant les mouvements de leur cheville, produit par une orthèse robotisée. La première journée permettait d’évaluer le comportement des participants lors de la phase d’acquisition de l’apprentissage. La seconde journée permettait d’évaluer leur rétention. Selon le groupe expérimental, l’apprentissage se faisait en présence d’une stimulation nociceptive cutanée, musculaire ou d’aucune stimulation (groupe contrôle). Initialement, l’application du champ de force provoquait d’importantes déviations des mouvements de la cheville (i.e. erreurs de mouvement), que les participants apprenaient graduellement à réduire en compensant activement la perturbation. L’erreur de mouvement moyenne durant la phase d’oscillation (en valeur absolue) a été quantifiée comme indicateur de performance. Une analyse plus approfondie des erreurs de mouvement et de l’activité musculaire a permis d’évaluer les stratégies motrices employées par les participants. Résultats : Les stimulations nociceptives n’ont pas affecté la performance lors de la phase d’acquisition de l’apprentissage moteur. Cependant, en présence de douleur, les erreurs de mouvement résiduelles se trouvaient plus tard dans la phase d’oscillation, suggérant l’utilisation d’une stratégie motrice moins anticipatoire que pour le groupe contrôle. Pour le groupe douleur musculaire, cette stratégie était associée à une activation précoce du muscle tibial antérieur réduite. La présence de douleur cutanée au Jour 1 interférait avec la performance des participants au Jour 2, lorsque le test de rétention était effectué en absence de douleur. Cet effet n’était pas observé lorsque la stimulation nociceptive cutanée était appliquée les deux jours, ou lorsque la douleur au Jour 1 était d’origine musculaire. Conclusion : Les résultats de cette thèse démontrent que dans certaines circonstances la douleur peut influencer de façon importante la performance lors d’un test de rétention d’une adaptation locomotrice, malgré une performance normale lors de la phase d’acquisition. Cet effet, observé uniquement avec la douleur cutanée, semble cependant plus lié au changement de contexte entre l’acquisition des habiletés motrices et le test de rétention (avec vs. sans douleur) qu’à une interférence directe avec la consolidation des habiletés motrices. Par ailleurs, malgré l’absence d’influence de la douleur sur la performance des participants lors de la phase d’acquisition de l’apprentissage, les stratégies motrices utilisées par ceux-ci étaient différentes de celles employées par le groupe contrôle.
Resumo:
Ankle sprains are the most common injuries in sports, usually causing damage to the lateral ligaments. Recurrence has as usual result permanent instability, and thus loss of proprioception. This fact, together with residual symptoms, is what is known as chronic ankle instability, CAI, or FAI, if it is functional. This problem tries to be solved by improving musculoskeletal stability and proprioception by the application of bandages and performing exercises. The aim of this study has been to review articles (meta-analisis, systematic reviews and revisions) published in 2009-2015 in PubMed, Medline, ENFISPO and BUCea, using keywords such as “sprain instability”, “sprain proprioception”, “chronic ankle instability”. Evidence affirms that there does exist decreased proprioception in patients who suffer from CAI. Rehabilitation exercise regimen is indicated as a treatment because it generates a subjective improvement reported by the patient, and the application of bandages works like a sprain prevention method limiting the range of motion, reducing joint instability and increasing confidence during exercise. As podiatrists we should recommend proprioception exercises to all athletes in a preventive way, and those with CAI or FAI, as a rehabilitation programme, together with the application of bandages. However, further studies should be generated focusing on ways of improving proprioception, and on the exercise patterns that provide the maximum benefit.
Resumo:
BACKGROUND: The nonoperative treatment of posterior tibial tendon insufficiency (PTTI) can lead to unsatisfactory functional results. Short-term results are available but the impact on the evolution of the deformity is not known. To address these problems, a new brace for the flexible Stage II deformity was developed, and midterm followup was obtained. MATERIALS AND METHOD: In a prospective case series, eighteen patients (mean age 64.2 years; range, 31 to 82; four male, 14 female) with flexible Stage II PTTI were fitted with the new custom-molded foot orthosis. At latest followup of a mean of 61.4 (range, 20 to 87) months, functional results were assessed with the AOFAS ankle hindfoot score and clinical or radiographic progression was recorded. RESULTS: The score improved significantly from a mean of 56 points (range, 20 to 64) to a mean of 82 points (range, 64 to 100, p < 0.001). Three patients (3/18, 16%) had a clinical progression to a fixed deformity (Stage III) and a radiographic increase of their deformity. All the other patients were satisfied with the brace's comfort and noted an improvement in their mobility. Complications were seen in three patients (3/18, 16%), and consisted of the development of calluses. CONCLUSION: The "shell brace" is a valuable option for nonoperative treatment of the flexible Stage II PTTI. Hindfoot flexibility was conserved throughout the observation period in all but three patients. Functional outcome and patient acceptance was above average. Problems were few, and closely associated with a progression to a fixed, Stage III deformity.
Resumo:
This thesis utilises an evidence-based approach to critically evaluate and summarize effectiveness research on physiotherapy, physiotherapy-related motor-based interventions and orthotic devices in children and adolescents with cerebral palsy (CP). It aims to assess the methodological challenges of the systematic reviews and trials, to evaluate the effectiveness of interventions in current use, and to make suggestions for future trials Methods: Systematic reviews were searched from computerized bibliographic databases up to August 2007 for physiotherapy and physiotherapy-related interventions, and up to May 2003 for orthotic devices. Two reviewers independently identified, selected, and assessed the quality of the reviews using the Overview Quality Assessment Questionnaire complemented with decision rules. From a sample of 14 randomized controlled trials (RCT) published between January 1990 and June 2003 we analysed the methods of sampling, recruitment, and comparability of groups; defined the components of a complex intervention; identified outcome measures based on the International Classification of Functioning, Disability and Health (ICF); analysed the clinical interpretation of score changes; and analysed trial reporting using a modified 33-item CONSORT (Consolidated Standards of Reporting Trials) checklist. The effectiveness of physiotherapy and physiotherapy-related interventions in children with diagnosed CP was evaluated in a systematic review of randomised controlled trials that were searched from computerized databases from January 1990 up to February 2007. Two reviewers independently assessed the methodological quality, extracted the data, classified the outcomes using the ICF, and considered the level of evidence according to van Tulder et al. (2003). Results: We identified 21 reviews on physiotherapy and physiotherapy-related interventions and five on orthotic devices. These reviews summarized 23 or 5 randomised controlled trials and 104 or 27 observational studies, respectively. Only six reviews were of high quality. These found some evidence supporting strength training, constraint-induced movement therapy or hippotherapy, and insufficient evidence on comprehensive interventions. Based on the original studies included in the reviews on orthotic devices we found some short-term effects of lower limb casting on passive range of movement, and of ankle-foot orthoses on equinus walk. Long term effects of lower limb orthoses have not been studied. Evidence of upper limb casting or orthoses is conflicting. In the sample of 14 RCTs, most trials used simple randomisation, complemented with matching or stratification, but only three specified the concealed allocation. Numerous studies provided sufficient details on the components of a complex intervention, but the overlap of outcome measures across studies was poor and the clinical interpretation of observed score changes was mostly missing. Almost half (48%) of the applicable CONSORT-based items (range 28 32) were reported adequately. Most reporting inadequacies were in outcome measures, sample size determination, details of the sequence generation, allocation concealment and implementation of the randomization, success of assessor blinding, recruitment and follow-up dates, intention-to-treat analysis, precision of the effect size, co-interventions, and adverse events. The systematic review identified 22 trials on eight intervention categories. Four trials were of high quality. Moderate evidence of effectiveness was established for upper extremity treatments on attained goals, active supination and developmental status, and of constraint-induced therapy on the amount and quality of hand use and new emerging behaviours. Moderate evidence of ineffectiveness was found for strength training's effect on walking speed and stride length. Conflicting evidence was found for strength training's effect on gross motor function. For the other intervention categories the evidence was limited due to the low methodological quality and the statistically insignificant results of the studies. Conclusions: The high-quality reviews provide both supportive and insufficient evidence on some physiotherapy interventions. The poor quality of most reviews calls for caution, although most reviews drew no conclusions on effectiveness due to the poor quality of the primary studies. A considerable number of RCTs of good to fair methodological and reporting quality indicate that informative and well-reported RCTs on complex interventions in children and adolescents with CP are feasible. Nevertheless, methodological improvement is needed in certain areas of the trial design and performance, and the trial authors are encouraged to follow the CONSORT criteria. Based on RCTs we established moderate evidence for some effectiveness of upper extremity training. Due to limitations in methodological quality and variations in population, interventions and outcomes, mostly limited evidence on the effectiveness of most physiotherapy interventions is available to guide clinical practice. Well-designed trials are needed, especially for focused physiotherapy interventions.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Introduction: Technical literature shows high frequencies of injuries occurring in classical ballet dancers; however, only limited information about the permanent effects of chronic diseases are mentioned. Objective: To compare the presence of MSD among dancers who wear pointe shoes and those who do not. Methods: The research was conducted at the 27th Festival of Joinville in Santa Catarina. The study had the participation of 111 dancers, 88 of whom wore pointe shoes while 23 did not. Specific procedures were used to obtain information related to MSD and foot injuries caused by dancing. Results: The most affected parts were the knees (29.7% with pointe shoes versus 39% without), spine (26.4% with pointe shoes versus 22% without), and ankle/foot (20% with pointe shoes versus 12.2% without). Through odds ratio and respective confidence intervals (IC95%), the study identified protection factor in the knees (0.24; CI95% - 0.09-0.64) and legs (0.11; CI95% - 0.02-0.65) for dancers who wear pointe shoes. It was found that the risk of injuries in specific structures of the foot is significantly higher among those dancers. In this case, the appearance of bunions (9.74; CI95% - 1.25-75,99), calluses on the toes (3.46; CI95% - 1.29-9.27) and the association of the three (4.47; CI95% - 1.69-11.83) were those that showed an increased risk factor compared to dancers who do not stand en pointe. Conclusion: The use of pointe shoes in elite Brazilian dancers was associated to lower occurrence of MSD in the knee and leg, however it was strongly associated to foot injuries.
Resumo:
A main objective of the human movement analysis is the quantitative description of joint kinematics and kinetics. This information may have great possibility to address clinical problems both in orthopaedics and motor rehabilitation. Previous studies have shown that the assessment of kinematics and kinetics from stereophotogrammetric data necessitates a setup phase, special equipment and expertise to operate. Besides, this procedure may cause feeling of uneasiness on the subjects and may hinder with their walking. The general aim of this thesis is the implementation and evaluation of new 2D markerless techniques, in order to contribute to the development of an alternative technique to the traditional stereophotogrammetric techniques. At first, the focus of the study has been the estimation of the ankle-foot complex kinematics during stance phase of the gait. Two particular cases were considered: subjects barefoot and subjects wearing ankle socks. The use of socks was investigated in view of the development of the hybrid method proposed in this work. Different algorithms were analyzed, evaluated and implemented in order to have a 2D markerless solution to estimate the kinematics for both cases. The validation of the proposed technique was done with a traditional stereophotogrammetric system. The implementation of the technique leads towards an easy to configure (and more comfortable for the subject) alternative to the traditional stereophotogrammetric system. Then, the abovementioned technique has been improved so that the measurement of knee flexion/extension could be done with a 2D markerless technique. The main changes on the implementation were on occlusion handling and background segmentation. With the additional constraints, the proposed technique was applied to the estimation of knee flexion/extension and compared with a traditional stereophotogrammetric system. Results showed that the knee flexion/extension estimation from traditional stereophotogrammetric system and the proposed markerless system were highly comparable, making the latter a potential alternative for clinical use. A contribution has also been given in the estimation of lower limb kinematics of the children with cerebral palsy (CP). For this purpose, a hybrid technique, which uses high-cut underwear and ankle socks as “segmental markers” in combination with a markerless methodology, was proposed. The proposed hybrid technique is different than the abovementioned markerless technique in terms of the algorithm chosen. Results showed that the proposed hybrid technique can become a simple and low-cost alternative to the traditional stereophotogrammetric systems.