871 resultados para Anisotropic Analytical Algorithm
Resumo:
The effectiveness of the Anisotropic Analytical Algorithm (AAA) implemented in the Eclipse treatment planning system (TPS) was evaluated using theRadiologicalPhysicsCenteranthropomorphic lung phantom using both flattened and flattening-filter-free high energy beams. Radiation treatment plans were developed following the Radiation Therapy Oncology Group and theRadiologicalPhysicsCenterguidelines for lung treatment using Stereotactic Radiation Body Therapy. The tumor was covered such that at least 95% of Planning Target Volume (PTV) received 100% of the prescribed dose while ensuring that normal tissue constraints were followed as well. Calculated doses were exported from the Eclipse TPS and compared with the experimental data as measured using thermoluminescence detectors (TLD) and radiochromic films that were placed inside the phantom. The results demonstrate that the AAA superposition-convolution algorithm is able to calculate SBRT treatment plans with all clinically used photon beams in the range from 6 MV to 18 MV. The measured dose distribution showed a good agreement with the calculated distribution using clinically acceptable criteria of ±5% dose or 3mm distance to agreement. These results show that in a heterogeneous environment a 3D pencil beam superposition-convolution algorithms with Monte Carlo pre-calculated scatter kernels, such as AAA, are able to reliably calculate dose, accounting for increased lateral scattering due to the loss of electronic equilibrium in low density medium. The data for high energy plans (15 MV and 18 MV) showed very good tumor coverage in contrast to findings by other investigators for less sophisticated dose calculation algorithms, which demonstrated less than expected tumor doses and generally worse tumor coverage for high energy plans compared to 6MV plans. This demonstrates that the modern superposition-convolution AAA algorithm is a significant improvement over previous algorithms and is able to calculate doses accurately for SBRT treatment plans in the highly heterogeneous environment of the thorax for both lower (≤12 MV) and higher (greater than 12 MV) beam energies.
Resumo:
Mestrado em Radioterapia.
Resumo:
Dissertação de mestrado em Biofísica e Bionanossistemas
Resumo:
The purpose of this work was to study and quantify the differences in dose distributions computed with some of the newest dose calculation algorithms available in commercial planning systems. The study was done for clinical cases originally calculated with pencil beam convolution (PBC) where large density inhomogeneities were present. Three other dose algorithms were used: a pencil beam like algorithm, the anisotropic analytic algorithm (AAA), a convolution superposition algorithm, collapsed cone convolution (CCC), and a Monte Carlo program, voxel Monte Carlo (VMC++). The dose calculation algorithms were compared under static field irradiations at 6 MV and 15 MV using multileaf collimators and hard wedges where necessary. Five clinical cases were studied: three lung and two breast cases. We found that, in terms of accuracy, the CCC algorithm performed better overall than AAA compared to VMC++, but AAA remains an attractive option for routine use in the clinic due to its short computation times. Dose differences between the different algorithms and VMC++ for the median value of the planning target volume (PTV) were typically 0.4% (range: 0.0 to 1.4%) in the lung and -1.3% (range: -2.1 to -0.6%) in the breast for the few cases we analysed. As expected, PTV coverage and dose homogeneity turned out to be more critical in the lung than in the breast cases with respect to the accuracy of the dose calculation. This was observed in the dose volume histograms obtained from the Monte Carlo simulations.
Resumo:
In this article we analytically solve the Hindmarsh-Rose model (Proc R Soc Lond B221:87-102, 1984) by means of a technique developed for strongly nonlinear problems-the step homotopy analysis method. This analytical algorithm, based on a modification of the standard homotopy analysis method, allows us to obtain a one-parameter family of explicit series solutions for the studied neuronal model. The Hindmarsh-Rose system represents a paradigmatic example of models developed to qualitatively reproduce the electrical activity of cell membranes. By using the homotopy solutions, we investigate the dynamical effect of two chosen biologically meaningful bifurcation parameters: the injected current I and the parameter r, representing the ratio of time scales between spiking (fast dynamics) and resting (slow dynamics). The auxiliary parameter involved in the analytical method provides us with an elegant way to ensure convergent series solutions of the neuronal model. Our analytical results are found to be in excellent agreement with the numerical simulations.
Resumo:
Uveal melanoma is a rare but life-threatening form of ocular cancer. Contemporary treatment techniques include proton therapy, which enables conservation of the eye and its useful vision. Dose to the proximal structures is widely believed to play a role in treatment side effects, therefore, reliable dose estimates are required for properly evaluating the therapeutic value and complication risk of treatment plans. Unfortunately, current simplistic dose calculation algorithms can result in errors of up to 30% in the proximal region. In addition, they lack predictive methods for absolute dose per monitor unit (D/MU) values. ^ To facilitate more accurate dose predictions, a Monte Carlo model of an ocular proton nozzle was created and benchmarked against measured dose profiles to within ±3% or ±0.5 mm and D/MU values to within ±3%. The benchmarked Monte Carlo model was used to develop and validate a new broad beam dose algorithm that included the influence of edgescattered protons on the cross-field intensity profile, the effect of energy straggling in the distal portion of poly-energetic beams, and the proton fluence loss as a function of residual range. Generally, the analytical algorithm predicted relative dose distributions that were within ±3% or ±0.5 mm and absolute D/MU values that were within ±3% of Monte Carlo calculations. Slightly larger dose differences were observed at depths less than 7 mm, an effect attributed to the dose contributions of edge-scattered protons. Additional comparisons of Monte Carlo and broad beam dose predictions were made in a detailed eye model developed in this work, with generally similar findings. ^ Monte Carlo was shown to be an excellent predictor of the measured dose profiles and D/MU values and a valuable tool for developing and validating a broad beam dose algorithm for ocular proton therapy. The more detailed physics modeling by the Monte Carlo and broad beam dose algorithms represent an improvement in the accuracy of relative dose predictions over current techniques, and they provide absolute dose predictions. It is anticipated these improvements can be used to develop treatment strategies that reduce the incidence or severity of treatment complications by sparing normal tissue. ^
Resumo:
This paper describes an approach to solve the inverse kinematics problem of humanoid robots whose construction shows a small but non negligible offset at the hip which prevents any purely analytical solution to be developed. Knowing that a purely numerical solution is not feasible due to variable efficiency problems, the proposed one first neglects the offset presence in order to obtain an approximate “solution” by means of an analytical algorithm based on screw theory, and then uses it as the initial condition of a numerical refining procedure based on the Levenberg‐Marquardt algorithm. In this way, few iterations are needed for any specified attitude, making it possible to implement the algorithm for real‐time applications. As a way to show the algorithm’s implementation, one case of study is considered throughout the paper, represented by the SILO2 humanoid robot.
Resumo:
In the last years, it has become increasingly clear that neurodegenerative diseases involve protein aggregation, a process often used as disease progression readout and to develop therapeutic strategies. This work presents an image processing tool to automatic segment, classify and quantify these aggregates and the whole 3D body of the nematode Caenorhabditis Elegans. A total of 150 data set images, containing different slices, were captured with a confocal microscope from animals of distinct genetic conditions. Because of the animals’ transparency, most of the slices pixels appeared dark, hampering their body volume direct reconstruction. Therefore, for each data set, all slices were stacked in one single 2D image in order to determine a volume approximation. The gradient of this image was input to an anisotropic diffusion algorithm that uses the Tukey’s biweight as edge-stopping function. The image histogram median of this outcome was used to dynamically determine a thresholding level, which allows the determination of a smoothed exterior contour of the worm and the medial axis of the worm body from thinning its skeleton. Based on this exterior contour diameter and the medial animal axis, random 3D points were then calculated to produce a volume mesh approximation. The protein aggregations were subsequently segmented based on an iso-value and blended with the resulting volume mesh. The results obtained were consistent with qualitative observations in literature, allowing non-biased, reliable and high throughput protein aggregates quantification. This may lead to a significant improvement on neurodegenerative diseases treatment planning and interventions prevention
Resumo:
In this work, we present the explicit series solution of a specific mathematical model from the literature, the Deng bursting model, that mimics the glucose-induced electrical activity of pancreatic beta-cells (Deng, 1993). To serve to this purpose, we use a technique developed to find analytic approximate solutions for strongly nonlinear problems. This analytical algorithm involves an auxiliary parameter which provides us with an efficient way to ensure the rapid and accurate convergence to the exact solution of the bursting model. By using the homotopy solution, we investigate the dynamical effect of a biologically meaningful bifurcation parameter rho, which increases with the glucose concentration. Our analytical results are found to be in excellent agreement with the numerical ones. This work provides an illustration of how our understanding of biophysically motivated models can be directly enhanced by the application of a newly analytic method.
Resumo:
The euphotic depth (Zeu) is a key parameter in modelling primary production (PP) using satellite ocean colour. However, evaluations of satellite Zeu products are scarce. The objective of this paper is to investigate existing approaches and sensors to estimate Zeu from satellite and to evaluate how different Zeu products might affect the estimation of PP in the Southern Ocean (SO). Euphotic depth was derived from MODIS and SeaWiFS products of (i) surface chlorophyll-a (Zeu-Chla) and (ii) inherent optical properties (Zeu-IOP). They were compared with in situ measurements of Zeu from different regions of the SO. Both approaches and sensors are robust to retrieve Zeu, although the best results were obtained using the IOP approach and SeaWiFS data, with an average percentage of error (E) of 25.43% and mean absolute error (MAE) of 0.10 m (log scale). Nevertheless, differences in the spatial distribution of Zeu-Chla and Zeu-IOP for both sensors were found as large as 30% over specific regions. These differences were also observed in PP. On average, PP based on Zeu-Chla was 8% higher than PP based on Zeu-IOP, but it was up to 30% higher south of 60°S. Satellite phytoplankton absorption coefficients (aph) derived by the Quasi-Analytical Algorithm at different wavelengths were also validated and the results showed that MODIS aph are generally more robust than SeaWiFS. Thus, MODIS aph should be preferred in PP models based on aph in the SO. Further, we reinforce the importance of investigating the spatial differences between satellite products, which might not be detected by the validation with in situ measurements due to the insufficient amount and uneven distribution of the data.
Resumo:
Mestrado em Radioterapia.
Resumo:
Mestrado em Radioterapia
Resumo:
The calculation of the dose is one of the key steps in radiotherapy planning1-5. This calculation should be as accurate as possible, and over the years it became feasible through the implementation of new algorithms to calculate the dose on the treatment planning systems applied in radiotherapy. When a breast tumour is irradiated, it is fundamental a precise dose distribution to ensure the planning target volume (PTV) coverage and prevent skin complications. Some investigations, using breast cases, showed that the pencil beam convolution algorithm (PBC) overestimates the dose in the PTV and in the proximal region of the ipsilateral lung. However, underestimates the dose in the distal region of the ipsilateral lung, when compared with analytical anisotropic algorithm (AAA). With this study we aim to compare the performance in breast tumors of the PBC and AAA algorithms.
Resumo:
Objectivo do estudo: comparar o desempenho dos algoritmos Pencil Beam Convolution (PBC) e do Analytical Anisotropic Algorithm (AAA) no planeamento do tratamento de tumores de mama com radioterapia conformacional a 3D.
Resumo:
We have considered a Bose gas in an anisotropic potential. Applying the the Gross-Pitaevskii Equation (GPE) for a confined dilute atomic gas, we have used the methods of optimized perturbation theory and self-similar root approximants, to obtain an analytical formula for the critical number of particles as a function of the anisotropy parameter for the potential. The spectrum of the GPE is also discussed.