999 resultados para Angulogerina angulosa, d13C


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The presence of gas hydrates on the Blake Ridge diapir, northeastern Atlantic Ocean, offers an opportunity to study the impact of methane seepage on the ecology and geochemistry of benthic foraminifera in the late Holocene. Three push cores, covering a time span of ~ 1000 yrs, were retrieved from three distinct microhabitats at the top of the diapir at a water depth of ~ 2150 m: (i) sediments away from seepage (control core), (ii) sediments overlain by clusters of methanotrophic and thiotrophic bivalves, and (iii) chemoautotrophic microbial mats. The foraminiferal assemblages at the two seep sites are marked by a reduction in benthic foraminiferal species diversity, coupled with a near-absence of agglutinated species. However, an opportunistic population rise in CH4- or H2S-tolerant calcareous species (e.g., Globocassidulina subglobosa and Cassidulina laevigata) that utilize the abundant trophic resources at the seeps has led to an increase in the overall assemblage density there. The delta18O and delta13C values of three species of benthic foraminifera - Gyroidinoides laevigatus, Globocassidulina subglobosa, and Uvigerina peregrina - and the planktonic species Globorotalia menardii were acquired from all three cores. The benthic species from methane seeps yield delta13C values of 0.1 to - 4.2 (per mil VPDB), that are distinctly more 13C-depleted relative to the delta13C of 0.4 to - 1.0 (per mil VPDB) at the control (off seep) site. The species from a mussel-bed site exhibit more negative delta13C values than those from microbial mats, possibly reflecting different food sources and higher rate of anaerobic oxidation of methane. The positive delta13C values in the paired planktonic species suggest that authigenic carbonate precipitation did not overprint the observed 13C depletions. Hence the probable cause of negative delta13C of benthic foraminifera is primary calcification from Dissolved Inorganic Carbon (DIC) containing mixed carbon fractions from (a) highly 13C-depleted, microbially-oxidized methane and (b) a seawater source.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Benthic and selected planktic foraminifera and stable isotope records were determined in a piston core from the Gulf of Aden, NW Arabian Sea that spans the last 530 ka. The benthic foraminifera were grouped into four principal assemblages using Q-mode Principal Component Analyses. Comparison of each of these assemblages with the fauna of the nearby regions enabled us to identify their specific environmental requirements as a function of variability in food supply and strength of the oxygen minimum zone and by that to use them as indicators of surface water productivity. The benthic foraminiferal productivity indicators coupled with the record of Globigerina bulloides, a planktic foraminifer known to be sensitive to productivity changes in the region, all indicate higher productivity during glacial intervals and productivity similar to present or even reduced during interglacial stages. This trend is opposite to the productivity pattern related to the SW summer monsoon of the Arabian Sea and indicates the role of the NE winter monsoon on the productivity of the Gulf of Aden. A period of exceptionally enhanced productivity is recognized in the Gulf of Aden region between ~60 and 13 kyr indicating the intensification of the NE winter monsoon to its maximal activity. Contemporaneous indication of increased productivity in other parts of the Arabian Sea, unexplained so far by the SW summer monsoon variability, might be related to the intensification of the NE winter monsoon. Another prominent event of high productivity, second in its extent to the last glacial productivity event is recognized between 430 and 460 kyr. These two events seem to correspond to periods of similar orbital positioning of rather low precession (and eccentricity) amplitude for a relatively long period. Glacial boundary conditions seem to control to a large extent the NE winter monsoon variability as also indicated by the dominance of the 100 ka cycle in the investigated time series. Secondary in their importance are the 23 and 41 ka cycles which seem also to contribute to the NE monsoonal variability. Following the identification of productivity events related to the NE winter monsoon in the Gulf of Aden, it is possible now to extend this observation to other parts of the Arabian Sea and consider the contribution of this monsoonal system to the productivity fluctuations preserved in the sedimentary records.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

More than 30% of Buccella peruviana (D'Orbigny), Globocassidulina crassa porrecta (Earland & Heron-Allen), Cibicides mackannai (Galloway & Wissler) and C. refulgens (Montfort) indicate the presence of cold Sub Antarctic Shelf Water in winter, from 33.5 to 38.3 degrees S, deeper than 100 m, in the southern part of the study area. In summer, the abundance of this association decreases to less than 15% around 37.5-38.9 degrees S where two species (Globocassidulina subglobosa (Brady), Uvigerina peregrina (Cushman) take over. G. subglobosa, U. peregrina, and Hanzawaia boueana (D'Orbigny) are found at 27-33 degrees S in both seasons in less than 55 m deep in the northern part, and are linked with warm Subtropical Shelf Water and Tropical Water. Freshwater influence was signalized by high silicate concentration and by the presence of Pseudononion atlanticum (Cushman), Bolivina striatula (Cushman), Buliminella elegantissima (D'Orbigny), Bulimina elongata (D'Orbigny), Elphidium excavatum (Terquem), E. poeyanum (D'Orbigny), Ammobaculites exiguus (Cushman & Bronnimann), Arenoparrella mexicana (Kornfeld), Gaudryina exillis (Cushman & Bronnimann), Textularia earlandi (Parker) and thecamoebians in four sectors of the shelf. The presence of Bulimina marginata (D'Orbigny) between 34.1-32.8 degrees S in the winter and 34.2-32.7 degrees S in the summer indicates that the influence of the Subtropical Shelf Front on the sediment does not change seasonally, otherwise, the presence of Angulogerina angulosa (Williamson) in the winter, only in Mar del Plata (38.9 degrees S), show that Malvinas currents are not influencing the sediment in the summer.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

More than 30% of Buccella peruviana (D'Orbigny), Globocassidulina crassa porrecta (Earland & Heron-Allen), Cibicides mackannai (Galloway & Wissler) and C. refulgens (Montfort) indicate the presence of cold Sub Antarctic Shelf Water in winter, from 33.5 to 38.3º S, deeper than 100 m, in the southern part of the study area. In summer, the abundance of this association decreases to less than 15% around 37.5-38.9º S where two species (Globocassidulina subglobosa (Brady), Uvigerina peregrina (Cushman) take over. G. subglobosa, U. peregrina, and Hanzawaia boueana (D'Orbigny) are found at 27-33º S in both seasons in less than 55 m deep in the northern part, and are linked with warm Subtropical Shelf Water and Tropical Water. Freshwater influence was signalized by high silicate concentration and by the presence of Pseudononion atlanticum (Cushman), Bolivina striatula (Cushman), Buliminella elegantissima (D'Orbigny), Bulimina elongata (D'Orbigny), Elphidium excavatum (Terquem), E. poeyanum (D'Orbigny), Ammobaculites exiguus (Cushman & Brönnimann), Arenoparrella mexicana (Kornfeld), Gaudryina exillis (Cushman & Brönnimann), Textularia earlandi (Parker) and thecamoebians in four sectors of the shelf. The presence of Bulimina marginata (D'Orbigny) between 34.1-32.8º S in the winter and 34.2-32.7º S in the summer indicates that the influence of the Subtropical Shelf Front on the sediment does not change seasonally, otherwise, the presence of Angulogerina angulosa (Williamson) in the winter, only in Mar del Plata (38.9º S), show that Malvinas currents are not influencing the sediment in the summer.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The relative abundances of benthic foraminifers from the Oman margin have been analyzed from ODP Sites 725 and 726 near the upper boundary of the oxygen-minimum zone (OMZ) and 728 near the lower boundary. The relative abundance pattern of the benthic foraminiferal species in the two shallow sites show synchronous changes, which, together with variations in the faunal composition, may be attributed to changes in the location of the upper boundary of the OMZ during the last 7 million years. At the deeper site, the relative abundance pattern shows considerable variation in the faunal composition during the last 8 million years. The strong dominance of the shallow-water species Ammonia beccarii during the early Pliocene at Site 728 suggests a water depth less than 400 m during the early Pliocene and subsequent subsidence during the middle and late Pliocene to the present > 1400 m water depth.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Stratigraphic assemblages of Quaternary through early Eocene benthic foraminifers were recovered among 10 Peru margin drill sites. Various hiatuses and intervals barren in foraminifers characterize the sections, but numerous samples contain abundant, well-preserved benthic foraminifers. Bathymetry of the extant species and California-based estimates of the paleobathymetry of the extinct species permit recognition of Quaternary sea-level fluctuations between shelf and upper bathyal depths that produced vertical migrations of oxygenated and low-oxygen habitats at the six shallow sites. Assemblages from lower-slope sites at about 9° and 11°S indicate a general subsidence of the continental margin from shelf or upper bathyal depths in Eocene time to the present lower bathyal depths. Data from 11°S suggest a major part of this subsidence occurred in late Oligocene to early Miocene time. Downslope-transported shelf specimens, particularly the small biserial species, Bolivina costata and B. vaughani, are major contributors to these lower bathyal assemblages from the middle Miocene through Quaternary time.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We carried out oxygen and carbon isotope studies on monospecific foraminifer samples from DSDP Sites 522, 523, and 524 of Leg 73 in the central South Atlantic Ocean. The oxygen isotope ratios show a warming of 2 to 3 °C in bottom water and 5°C in surface water during the Paleocene and early Eocene. The carbon isotope values indicate strong upwelling during the early Eocene. The 1% increase in the d18O values of benthic and planktonic foraminifers at Site 523 in the later middle Eocene we ascribe to changes in the pattern of the evaporation and precipitation. The changes may be due to the worldwide Lutetian transgression. The oxygen ratios for the benthic and planktonic foraminifers indicate a cooling at the Eocene/Oligocene transition. The maximum temperature drop (5°C for benthic and 3°C for planktonic foraminifers) is recorded slightly beyond the Eocene/Oligocene boundary and took place over an interval of about 100,000 yr. The pattern of currents in the Southern Hemisphere was mainly structured by a precursor of the subtropical convergence during the Paleocene to late Eocene. The cooling at the Eocene/Oligocene transition led to drastic changes in the circulation pattern, and a precursor of the Antarctic convergence evolved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Continuous sedimentary records from an eastern Mediterranean cold-water coral ecosystem thriving in intermediate water depths (~600 m) reveal a temporary extinction of cold-water corals during the Early to Mid Holocene from 11.4-5.9 cal kyr BP. Benthic foraminiferal assemblage analysis shows low-oxygen conditions of 2 ml l**-1 during the same period, compared to bottom-water oxygen values of 4-5 ml l**-1 before and after the coral-free interval. The timing of the corals' demise coincides with the sapropel S1 event, during which the deep eastern Mediterranean basin turned anoxic. Our results show that during the sapropel S1 event low oxygen conditions extended to the rather shallow depths of our study site in the Ionian Sea and caused the cold-water corals temporary extinction. This first evidence for the sensitivity of cold-water corals to low oceanic oxygen contents suggests that the projected expansion of tropical oxygen minimum zones resulting from global change will threaten cold-water coral ecosystems in low latitudes in the same way that ocean acidification will do in the higher latitudes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

High-resolution benthic foraminiferal and geochemical investigations were carried out across sapropels S5 and S6 from two sediment cores in the Levantine Sea to evaluate the impact of climatic and environmental changes on benthic ecosystems during times of sapropel formation. The faunal successions indicate that eutrophication and/or oxygen reduction started several thousand years prior to the onset of sapropel formation, suggesting an early response of the bathyal ecosystems to climatic changes. Severest oxygen depletions appear in the early phases of sapropel formation. The initial reduction of deep-water ventilation is caused by a warming and fresh water-induced stratification of Eastern Mediterranean surface waters. During the late phase of S5 formation improved oxygenation is restricted to middle bathyal ecosystems, indicating that at least some formation of subsurface water took place. During S6 formation oxygen depletions and eutrophication were less severe and more variable than during S5 formation. Estimated oxygen contents were low dysoxic at middle bathyal to anoxic at lower bathyal depths during the early phase of S6 formation but never dropped to anoxic values in its late phase. The high benthic ecosystem variability during S6 formation suggests that water column stratification at deep-water formation sites was in a very unstable mode and susceptible to minor temperature fluctuations at a millennial time-scale.