191 resultados para Angioplasty
Resumo:
Platelet-derived microparticles (PMPs) which are produced during platelet activation contribute to coagulation1 and bind to traumatized endothelium in an animal model2. Such endothelial injury occurs during percutaneous transluminal coronary angioplasty (PTCA), a procedure which restores the diameter of occluded coronary arteries using balloon inflations. However, re-occlusions subsequently develop in 20-25% of patients3, although this is limited by treatment with anti-platelet glycoprotein IIb/IIIa receptor drugs such as abciximab4. However, abciximab only partially decreases the need for revascularisation5, and therefore other mechanisms appear to be involved. As platelet activation occurs during PTCA, it is likely that PMPs may be produced and contribute to restenosis. This study population consisted of 113 PTCA patients, of whom 38 received abciximab. Paired peripheral arterial blood samples were obtained from the PTCA sheath: 1) following heparinisation (baseline); and 2) subsequent to all vessel manipulation (post-PTCA). Blood was prepared with an anti-CD61 (glycoprotein IIIa) fluorescence conjugated antibody to identify PMPs using flow cytometry, and PMP results expressed as a percentage of all CD61 events. The level of PMPs increased significantly from baseline following PTCA in the without abciximab group (paired t test, P=0.019). However, there was no significant change in the level of PMPs following PTCA in patients who received abciximab. Baseline clinical characteristics between patient groups were similar, although patients administered abciximab had more complex PTCA procedures, such as increased balloon inflation pressures (ANOVA, P=0.0219). In this study, we have clearly demonstrated that the level of CD61-positive PMPs increased during PTCA. This trend has been demonstrated previously, although a low sample size prevented statistical significance being attained6. The results of our work also demonstrate that there was no increase in PMPs after PTCA with abiciximab treatment. The increased PMPs may adhere to traumatized endothelium, contributing to re-occlusion of the arteries, but this remains to be determined. References: (1) Holme PA, Brosstad F, Solum NO. Blood Coagulation and Fibrinolysis. 1995;6:302-310. (2) Merten M, Pakala R, Thiagarajan P, Benedict CR. Circulation. 1999;99:2577-2582. (3) Califf RM. American Heart Journal.1995;130:680-684. (4) Coller BS, Scudder LE. Blood. 1985;66:1456-1459. (5) Topol EJ, Califf RM, Weisman HF, Ellis SG, Tcheng JE, Worley S, Ivanhoe R, George BS, Fintel D, Weston M, Sigmon K, Anderson KM, Lee KL, Willerson JT on behalf of the EPIC investigators. Lancet. 1994;343:881-886. (6) Scharf RE, Tomer A, Marzec UM, Teirstein PS, Ruggeri ZM, Harker LA. Arteriosclerosis and Thrombosis. 1992;12:1475-87.
Resumo:
Platelet-derived microparticles that are produced during platelet activation are capable of adhesion and aggregation. Endothelial trauma that occurs during percutaneous transluminal coronary angioplasty (PTCA) may support platelet-derived microparticle adhesion and contribute to development of restenosis. We have previously reported an increase in platelet-derived microparticles in peripheral arterial blood with angioplasty. This finding raised concerns regarding the role of plateletderived microparticles in restenosis, and therefore the aim of this study was to monitor levels in the coronary circulation. The study population consisted of 19 angioplasty patients. Paired coronary artery and sinus samples were obtained following heparinization, following contrast administration, and subsequent to all vessel manipulation. Platelet-derived microparticles were identified with an anti-CD61 (glycoprotein IIIa) fluorescence-conjugated antibody using flow cytometry. There was a significant decrease in arterial platelet-derived microparticles from heparinization to contrast administration (P 0.001), followed by a significant increase to the end of angioplasty (P 0.004). However, there was no significant change throughout the venous samples. These results indicate that the higher level of platelet-derived microparticles after angioplasty in arterial blood remained in the coronary circulation. Interestingly, levels of thrombin–antithrombin complexes did not rise during PTCA. This may have implications for the development of coronary restenosis post-PTCA, although this remains to be determined.
Resumo:
Platelet-derived microparticles that are produced during platelet activation bind to traumatized endothelium. Such endothelial injury occurs during percutaneous transluminal coronary angioplasty. Approximately 20% of these patients subsequently develop restenosis, although this is improved by treatment with the anti-platelet glycoprotein IIb/IIIa receptor drug abciximab. As platelet activation occurs during angioplasty, it is likely that platelet-derived microparticles may be produced and hence contribute to restenosis. This study population consisted of 113 angioplasty patients, of whom 38 received abciximab. Paired peripheral arterial blood samples were obtained following heparinization and subsequent to all vessel manipulation. Platelet-derived microparticles were identified using an anti-CD61 (glycoprotein IIIa) fluorescence-conjugated antibody and flow cytometry. Baseline clinical characteristics between patient groups were similar. The level of platelet-derived microparticles increased significantly following angioplasty in the group without abciximab (paired t test, P 0.019). However, there was no significant change in the level of platelet-derived microparticles following angioplasty in patients who received abciximab, despite requiring more complex angioplasty procedures. In this study, we have demonstrated that the level of platelet-derived microparticles increased during percutaneous transluminal coronary angioplasty, with no such increase with abciximab treatment. The increased platelet-derived microparticles may adhere to traumatized endothelium, contributing to re-occlusion of the arteries, but this remains to be determined.
Resumo:
Critical chronic lower limb ischaemia (CLI) is the most severe form of peripheral arterial disease. Even though the treatment of CLI has evolved during the last decade, CLI is still associated with considerable morbidity, mortality and a decreased quality of life, in addition to a large financial impact on society. ---- Bypass surgery has traditionally been considered the approach of choice to treat CLI patients in order to avoid amputation. However, there are increasing data on the efficacy of endovascular revascularization procedures, such as percutaneous transluminal angioplasty (PTA), to achieve good leg salvage rates as well. Data gathered on all the 2,054 CLI patients revascularized at the Helsinki University Central Hospital between 2000 and 2007 were retrospectively analyzed. This patient cohort was used to compare the results of infrainguinal PTA and bypass surgery as well as to investigate predictors of failure after PTA. This study showed that infrainguinal PTA and bypass surgery yielded rather similar results in terms of survival, amputation-free survival and freedom from any re-intervention. When the femoropoliteal segment was treated, leg salvage was significantly better in the bypass surgery group, whereas no significant difference was observed between the two treatment methods when the revascularization extended to the infrapopliteal segment. PTA resulted in a significantly lower freedom from surgical re-interventions when compared to surgical revascularization. In this study the most important predictors of poor outcome after PTA for CLI were cardiac morbidity, nonambulatory status upon hospital arrival, and gangrene as a manifestation of CLI. Thus, when feasible, PTA seems to be a valid alternative for bypass surgery in the treatment of CLI provided that active redo-surgery is utilized. The optimal revascularization strategy should always be sought for each CLI patient individually considering the clinical state of the leg, the occlusive lesions to be treated, co-morbidities, life-expectancy, and the availability of a suitable vein for bypass.
Resumo:
One way to restore physiological blood flow to occluded arteries involves the deformation of plaque using an intravascular balloon and preventing elastic recoil using a stent. Angioplasty and stent implantation cause unphysiological loading of the arterial tissue, which may lead to tissue in-growth and reblockage; termed “restenosis.” In this paper, a computational methodology for predicting the time-course of restenosis is presented. Stress-induced damage, computed using a remaining life approach, stimulates inflammation (production of matrix degrading factors and growth stimuli). This, in turn, induces a change in smooth muscle cell phenotype from contractile (as exists in the quiescent tissue) to synthetic (as exists in the growing tissue). In this paper, smooth muscle cell activity (migration, proliferation, and differentiation) is simulated in a lattice using a stochastic approach to model individual cell activity. The inflammation equations are examined under simplified loading cases. The mechanobiological parameters of the model were estimated by calibrating the model response to the results of a balloon angioplasty study in humans. The simulation method was then used to simulate restenosis in a two dimensional model of a stented artery. Cell activity predictions were similar to those observed during neointimal hyperplasia, culminating in the growth of restenosis. Similar to experiment, the amount of neointima produced increased with the degree of expansion of the stent, and this relationship was found to be highly dependant on the prescribed inflammatory response. It was found that the duration of inflammation affected the amount of restenosis produced, and that this effect was most pronounced with large stent expansions. In conclusion, the paper shows that the arterial tissue response to mechanical stimulation can be predicted using a stochastic cell modeling approach, and that the simulation captures features of restenosis development observed with real stents. The modeling approach is proposed for application in three dimensional models of cardiovascular stenting procedures.
Resumo:
Introduction: The identification of stages of dietary change and the factors affecting food choices can direct more effective nutritional intervention against coronary heart disease progression. Objective: Identify the stages of change of eating behavior and its relation with nutritional status, food consumption and previous cardiovascular events in patients who underwent coronary angioplasty. Methods: A cross-sectional study with 200 hospitalized patients from a specialized cardiology hospital, after elective coronary angioplasty. They were applied an algorithm that identifies the provision of change of eating habits for a healthier pattern. Variables measured were stages of change of eating behavior, nutritional status, food consumption and cardiovascular events (previous myocardial infarction or angioplasty). It was realized comparison of averages by analysis of variance or Student's test and Chi-square test for qualitative variables. Value of significance was taken at 5%. Results: The patients were classified in the following stages: 36% maintenance, 26% preparation, 17% precontemplation, 12% action and 9% contemplation. It was observed higher cardiovascular events in maintenance/action group (p = 0.04), higher consumption of calories (p = 0.04), meat/eggs (p = 0.01) and sweets (p = 0.03) in preparation stage, comparing to maintenance group, and no association between nutritional status and stages of change (p = 0.13), although 62% of the individuals in maintenance stage were overweight. Conclusions: This work contributed to identifying the stages of change and conditions that favor changes in eating pattern. Even patients that classified themselves into the maintenance stage need to adjust their eating habits in order to reach a healthy weight.
Resumo:
Background-The Second Medicine, Angioplasty, or Surgery Study (MASS II) included patients with multivessel coronary artery disease and normal systolic ventricular function. Patients underwent coronary artery bypass graft surgery (CABG, n = 203), percutaneous coronary intervention (PCI, n = 205), or medical treatment alone (MT, n = 203). This investigation compares the economic outcome at 5-year follow-up of the 3 therapeutic strategies. Methods and Results-We analyzed cumulative costs during a 5-year follow-up period. To analyze the cost-effectiveness, adjustment was made on the cumulative costs for average event-free time and angina-free proportion. Respectively, for event-free survival and event plus angina-free survival, MT presented 3.79 quality-adjusted life-years and 2.07 quality-adjusted life-years; PCI presented 3.59 and 2.77 quality-adjusted life-years; and CABG demonstrated 4.4 and 2.81 quality-adjusted life-years. The event-free costs were $9071.00 for MT; $19 967.00 for PCI; and $18 263.00 for CABG. The paired comparison of the event-free costs showed that there was a significant difference favoring MT versus PCI (P<0.01) and versus CABG (P<0.01) and CABG versus PCI (P<0.01). The event-free plus angina-free costs were $16 553.00, $25 831.00, and $24 614.00, respectively. The paired comparison of the event-free plus angina-free costs showed that there was a significant difference favoring MT versus PCI (P=0.04), and versus CABG (P<0.001); there was no difference between CABG and PCI (P>0.05). Conclusions-In the long-term economic analysis, for the prevention of a composite primary end point, MT was more cost effective than CABG, and CABG was more cost-effective than PCI.
Resumo:
Purpose: To report an angiographic investigation of midterm atherosclerotic disease progression in below-the-knee (BTK) arteries of claudicants. Methods: Angiograms were performed in 58 consecutive claudicants (35 men; mean age 68.3±8.7 years) with endovascular treatment of femoropopliteal arteries in 58 limbs after a mean follow-up of 3.6±1.2 years. Angiograms were reviewed in consensus by 2 experienced readers blinded to clinical data. Progression of atherosclerosis in 4 BTK arterial segments (tibioperoneal trunk, anterior and posterior tibial arteries, and peroneal artery) was assessed according to the Bollinger score. The composite per calf Bollinger score represented the average of the 4 BTK arterial segment scores. The association of the Bollinger score with cardiovascular risk factors and gender was scrutinized. Results: A statistically significant increase in atherosclerotic burden was observed for the mean composite per calf Bollinger score (5.7±8.3 increase, 95% CI 3.5 to 7.9, p<0.0001), as well as for each single arterial segment analyzed. In multivariate linear regression analysis, diabetes mellitus was associated with a more pronounced progression of atherosclerotic burden in crural arteries (β: 5.6, p=0.035, 95% CI 0.398 to 10.806). Conclusion: Progression of infrapopliteal atherosclerotic lesions is common in claudicants during midterm follow-up. Presence of diabetes mellitus was confirmed as a major risk factor for more pronounced atherosclerotic BTK disease progression.
Resumo:
Endovascular treatment is an increasingly used therapeutic option in patients with chronic atherosclerotic occlusive mesenteric disease. Purpose of this study was evaluation of patency and mortality in patients treated with visceral artery percutaneous transluminal angioplasty (PTA) or stenting including follow-up.
Resumo:
Animal experiments have shown that the coronary circulation is pressure distensible, i.e., myocardial blood volume (MBV) increases with perfusion pressure. In humans, however, corresponding measurements are lacking so far. We sought to quantify parameters reflecting coronary distensibility such as MBV and coronary resistance (CR) during and after coronary angioplasty. Thirty patients with stable coronary artery disease underwent simultaneous coronary perfusion pressure assessment and myocardial contrast echocardiography (MCE) of 37 coronary arteries and their territories during and after angioplasty. MCE yielded MBV and myocardial blood flow (MBF; in ml · min(-1) · g(-1)). Complete data sets were obtained in 32 coronary arteries and their territories from 26 patients. During angioplasty, perfusion pressure, i.e., coronary occlusive pressure, and MBV varied between 9 and 57 mmHg (26.9 ± 11.9 mmHg) and between 1.2 and 14.5 ml/100 g (6.7 ± 3.7 ml/100 g), respectively. After successful angioplasty, perfusion pressure and MBV increased significantly (P < 0.001 for both) and varied between 64 and 118 mmHg (93.5 ± 12.8 mmHg) and between 3.7 and 17.3 ml/100 g (9.8 ± 3.4 ml/100 g), respectively. Mean MBF increased from 31 ± 20 ml · min(-1) · g(-1) during coronary occlusion, reflecting collateral flow, to 121 ± 33 ml · min(-1) · g(-1) (P < 0.01), whereas mean CR, i.e., the ratio of perfusion pressure and MBF, decreased by 20% (P < 0.001). In conclusion, the human coronary circulation is pressure distensible. MCE allows for the quantification of CR and MBV in humans.
Resumo:
The study investigated the efficacy and safety of a balloon expandable, sirolimus-eluting stent (SES) in patients with symptomatic infrapopliteal arterial disease.
Resumo:
Stenting has been shown to improve patency after femoral artery revascularization compared with balloon angioplasty. Limited data are available evaluating endovascular treatment for obstructive lesions of the popliteal artery.