85 resultados para Aneuploidy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aerobic respiration is a fundamental energy-generating process; however, there is cost associated with living in an oxygen-rich environment, because partially reduced oxygen species can damage cellular components. Organisms evolved enzymes that alleviate this damage and protect the intracellular milieu, most notably thiol peroxidases, which are abundant and conserved enzymes that mediate hydrogen peroxide signaling and act as the first line of defense against oxidants in nearly all living organisms. Deletion of all eight thiol peroxidase genes in yeast (∆8 strain) is not lethal, but results in slow growth and a high mutation rate. Here we characterized mechanisms that allow yeast cells to survive under conditions of thiol peroxidase deficiency. Two independent ∆8 strains increased mitochondrial content, altered mitochondrial distribution, and became dependent on respiration for growth but they were not hypersensitive to H2O2. In addition, both strains independently acquired a second copy of chromosome XI and increased expression of genes encoded by it. Survival of ∆8 cells was dependent on mitochondrial cytochrome-c peroxidase (CCP1) and UTH1, present on chromosome XI. Coexpression of these genes in ∆8 cells led to the elimination of the extra copy of chromosome XI and improved cell growth, whereas deletion of either gene was lethal. Thus, thiol peroxidase deficiency requires dosage compensation of CCP1 and UTH1 via chromosome XI aneuploidy, wherein these proteins support hydroperoxide removal with the reducing equivalents generated by the electron transport chain. To our knowledge, this is the first evidence of adaptive aneuploidy counteracting oxidative stress.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Apoptosis has an essential function in maintaining the integrity of the gastrointestinal mucosa. Its deregulation is associated with the occurrence of lesions such as in atrophic gastritis, peptic ulcers, intestinal metaplasia, and stomach tumorigenesis. Thus, the aim of the present study was to investigate the frequency of apoptotic cells (apoptotic index, AI) by using two different immunohistochemical techniques, TUNEL and anti-activated caspase-3 antibody (CPP32), in gastric dyspepsia [chronic gastritis (CG, N = 34), chronic atrophic gastritis (CAG, N = 11), gastric ulcer (GU, N = 17), and intestinal metaplasia (IM, N = 15)], normal gastric mucosae (NM, N = 8), and gastric adenocarcinoma (GC, N = 12). The relationship was investigated between the AI and Helicobacter pylori infection, diagnosed by PCR, overexpression of p53 protein determined by immunohistochemistry, and aneuploidy by fluorescence in situ hybridization, as performed by our laboratory in previous studies. No significant differences were observed in AI between the different groups, whether by the TUNEL technique (F = 1.60; P = 0.1670) or by CPP32 antibody (F = 1.70; P = 0.1420). Nonetheless, CAG and CG groups had AI statistically higher than those of normal mucosae. These two groups (CAG and CG) also showed a higher frequency of apoptosis-positive cases (TUNEL+ or CPP32+). Generally, there was no correlation between the AI detected by the TUNEL and CPP32 techniques in the groups studied, except in the GC group (r = 0.70). Moreover, there was no significant association between apoptosis and H. pylori infection, overexpression of p53 protein and aneuploidy, but the H. pylori-positive cases only of GU (P = 0.0233) and IM (P = 0.0253) groups displayed a statistically higher AI compared to H. pylori-negative NM, when the CPP32 antibody technique was used. Thus, CG and CAG have increased apoptosis, which may occur independent of an association with H. pylori infection, aneuploidy and overexpression of p53 protein. ©FUNPEC-RP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pedigree analysis of certain families with a high incidence of tumors suggests a genetic predisposition to cancer. Li and Fraumeni described a familial cancer syndrome that is characterized by multiple primary tumors, early age of onset, and marked variation in tumor type. Williams and Strong (1) demonstrated that at least 7% of childhood soft tissue sarcoma patients had family histories that is readily explained by a highly penetrant autosomal dominant gene. To characterize the mechanism for genetic predisposition to many tumor types in these families, we have studied genetic alterations in fibroblasts, a target tissue from patients with the Li-Fraumeni Syndrome (LFS).^ We have observed spontaneous changes in initially normal dermal fibroblasts from LFS patients as they are cultured in vitro. The cells acquire an altered morphology, chromosomal anomalies, and anchorage-independent growth. This aberrant behavior of fibroblasts from LFS patients had never been observed in fibroblasts from normal donors. In addition to these phenotypic alterations, patient fibroblasts spontaneously immortalize by 50 population doublings (pd) in culture; unlike controls that remain normal and senesce by 30-35 (2). At 50 pd, immortal fibroblasts from two patients were found to be susceptible to tumorigenic transformation by an activated T24 H-ras oncogene (3). Approximately 80% of the oncogene expressing transfectants were capable of forming tumors in nude mice within 2-3 weeks. p53 has been previously associated with immortalization of cells in culture and cooperation with ras in transfection assays. Therefore, patients' fibroblast and lymphocyte derived DNA was tested for point mutations in p53. It was shown that LFS patients inherited certain point mutations in one of the two p53 alleles (4). Further studies on the above LFS immortal fibroblasts have demonstrated loss of the remaining p53 allele concomitant with escape from senescence. While the loss of the second allele correlates with immortalization it is not sufficient to transformation by an activated H-ras or N-ras oncogene. These immortal fibroblasts are resistant to tumorigenic transformation by v-abl, v-src, c-neu or v-mos oncogene; implying that additional steps are required in the tumorigenic progression of LFS patients' fibroblasts.^ References. (1) Williams et al., J. Natl. Cancer Inst. 79:1213, 1987. (2) Bischoff et al., Cancer Res. 50:7979, 1990. (3) Bischoff et al., Oncogene 6:183, 1991. (4) Malkin et al., Science 250:1233, 1990. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diethylstilbestrol (DES) is a known human carcinogen and teratogen whose mechanism of action remains undetermined. As essentially diploid Chinese hamster cell line (Don) was used to test diethylstilbestrol (DES), dienestrol, hexestrol and the naturally occurring estrogens, estradiol and estriol for their ability to cause metaphase arrest and to induce aneuploidy. These compounds arrest mitosis within a narrow range of high concentrations and induce aneuploidy in recovering cell populations. DES was the most effective arrestant on a comparative molar basis. Estradiol and estriol were less potent as arrestants but were effective inducers of aneuploidy. Aneuploidy was induced in a non-random manner. The smallest chromosomes were most frequently recorded in aneuploid cells. Using anti-tubulin antibody and indirect immunofluorescence, it was found that DES inhibits bi-polar spindle assembly and disrupts the cytoplasmic microtubule complex (CMTC). Estradiol arrests mitosis in a manner that allows spindle assembly. Estradiol has no apparent effect on the CMTC. The naturally occurring estrogens caused chromosome displacement during mitotic arrest. Electron microscopy confirmed that the displaced chromosomes appeared at the polar regions of arrested cells. The arresting effect of estradiol, and to some extent DES, was reduced by the addition of dibutyryl cyclic adenosine monophosphate (db-cAMP). Aneuploidy induction by DES and similar compounds may be related to their carcinogenic and/or teratogenic potential. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prenatal diagnosis is traditionally made via invasive procedures such as amniocentesis and chorionic villus sampling (CVS). However, both procedures carry a risk of complications, including miscarriage. Many groups have spent years searching for a way to diagnose a chromosome aneuploidy without putting the fetus or the mother at risk for complications. Non-invasive prenatal testing (NIPT) for chromosome aneuploidy became commercially available in the fall of 2011, with detection rates similar to those of invasive procedures for the common autosomal aneuploidies (Palomaki et al., 2011; Ashoor et al. 2012; Bianchi et al. 2012). Eventually NIPT may become the diagnostic standard of care and reduce invasive procedure-related losses (Palomaki et al., 2011). The integration of NIPT into clinical practice has potential to revolutionize prenatal diagnosis; however, it also raises some crucial issues for practitioners. Now that the test is clinically available, no studies have looked at the physicians that will be ordering the testing or referring patients to practitioners who do. This study aimed to evaluate the attitudes of OB/GYN’s and how they are incorporating the test into clinical practice. Our study shows that most physicians are offering this new, non-invasive technology to their patients, and that their practices were congruent with the literature and available professional society opinions. Those physicians who do not offer NIPT to their patients would like more literature on the topic as well as instructive guidelines from their professional societies. Additionally, this study shows that the practices and attitudes of MFMs and OBs differ. Our population feels that the incorporation of NIPT will change their practices by lowering the amount of invasive procedures, possibly replacing maternal serum screening, and that it will simplify prenatal diagnosis. However, those physicians who do not offer NIPT to their patients are not quite sure how the test will affect their clinical practice. From this study we are able to glean how physicians are incorporating this new technology into their practice and how they feel about the addition to their repertoire of tests. This knowledge gives insight as to how to best move forward with the quickly changing field of prenatal diagnosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genetic inactivation of the transforming growth factor-β (TGF-β) signaling pathway can accelerate tumor progression in the mouse epidermal model of multistage carcinogenesis. By using an in vitro model of keratinocyte transformation that parallels in vivo malignant conversion to squamous cell carcinoma, we show that v-rasHa transduced primary TGF-β1−/− keratinocytes and keratinocytes expressing a TGF-β type II dominant-negative receptor transgene have significantly higher frequencies of spontaneous transformation than control genotypes. Malignant transformation in the TGF-β1−/− keratinocytes is preceded by aneuploidy and accumulation of chromosomal aberrations. Similarly, transient inactivation of TGF-β signaling with a type II dominant-negative receptor adenovirus causes rapid changes in ploidy. Exogenous TGF-β1 can suppress aneuploidy, chromosome breaks, and malignant transformation of the TGF-β1−/− keratinocytes at concentrations that do not significantly arrest cell proliferation. These results point to genomic instability as a mechanism by which defects in TGF-β signaling could accelerate tumor progression in mouse multistage carcinogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genetic and phenotypic instability are hallmarks of cancer cells, but their cause is not clear. The leading hypothesis suggests that a poorly defined gene mutation generates genetic instability and that some of many subsequent mutations then cause cancer. Here we investigate the hypothesis that genetic instability of cancer cells is caused by aneuploidy, an abnormal balance of chromosomes. Because symmetrical segregation of chromosomes depends on exactly two copies of mitosis genes, aneuploidy involving chromosomes with mitosis genes will destabilize the karyotype. The hypothesis predicts that the degree of genetic instability should be proportional to the degree of aneuploidy. Thus it should be difficult, if not impossible, to maintain the particular karyotype of a highly aneuploid cancer cell on clonal propagation. This prediction was confirmed with clonal cultures of chemically transformed, aneuploid Chinese hamster embryo cells. It was found that the higher the ploidy factor of a clone, the more unstable was its karyotype. The ploidy factor is the quotient of the modal chromosome number divided by the normal number of the species. Transformed Chinese hamster embryo cells with a ploidy factor of 1.7 were estimated to change their karyotype at a rate of about 3% per generation, compared with 1.8% for cells with a ploidy factor of 0.95. Because the background noise of karyotyping is relatively high, the cells with low ploidy factor may be more stable than our method suggests. The karyotype instability of human colon cancer cell lines, recently analyzed by Lengnauer et al. [Lengnauer, C., Kinzler, K. W. & Vogelstein, B. (1997) Nature (London) 386, 623–627], also corresponds exactly to their degree of aneuploidy. We conclude that aneuploidy is sufficient to explain genetic instability and the resulting karyotypic and phenotypic heterogeneity of cancer cells, independent of gene mutation. Because aneuploidy has also been proposed to cause cancer, our hypothesis offers a common, unique mechanism of altering and simultaneously destabilizing normal cellular phenotypes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aneuploidy or chromosome imbalance is the most massive genetic abnormality of cancer cells. It used to be considered the cause of cancer when it was discovered more than 100 years ago. Since the discovery of the gene, the aneuploidy hypothesis has lost ground to the hypothesis that mutation of cellular genes causes cancer. According to this hypothesis, cancers are diploid and aneuploidy is secondary or nonessential. Here we reexamine the aneuploidy hypothesis in view of the fact that nearly all solid cancers are aneuploid, that many carcinogens are nongenotoxic, and that mutated genes from cancer cells do not transform diploid human or animal cells. By regrouping the gene pool—as in speciation—aneuploidy inevitably will alter many genetic programs. This genetic revolution can explain the numerous unique properties of cancer cells, such as invasiveness, dedifferentiation, distinct morphology, and specific surface antigens, much better than gene mutation, which is limited by the conservation of the existing chromosome structure. To determine whether aneuploidy is a cause or a consequence of transformation, we have analyzed the chromosomes of Chinese hamster embryo (CHE) cells transformed in vitro. This system allows (i) detection of transformation within 2 months and thus about 5 months sooner than carcinogenesis and (ii) the generation of many more transformants per cost than carcinogenesis. To minimize mutation of cellular genes, we have used nongenotoxic carcinogens. It was found that 44 out of 44 colonies of CHE cells transformed by benz[a]pyrene, methylcholanthrene, dimethylbenzanthracene, and colcemid, or spontaneously were between 50 and 100% aneuploid. Thus, aneuploidy originated with transformation. Two of two chemically transformed colonies tested were tumorigenic 2 months after inoculation into hamsters. The cells of transformed colonies were heterogeneous in chromosome number, consistent with the hypothesis that aneuploidy can perpetually destabilize the chromosome number because it unbalances the elements of the mitotic apparatus. Considering that all 44 transformed colonies analyzed were aneuploid, and the early association between aneuploidy, transformation, and tumorigenicity, we conclude that aneuploidy is the cause rather than a consequence of transformation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Etoposide, a topoisomerase II inhibitor widely used in cancer therapy, is suspected of inducing secondary tumors and affecting the genetic constitution of germ cells. A better understanding of the potential heritable risk of etoposide is needed to provide sound genetic counseling to cancer patients treated with this drug in their reproductive years. We used a mouse model to investigate the effects of clinical doses of etoposide on the induction of chromosomal abnormalities in spermatocytes and their transmission to zygotes by using a combination of chromosome painting and 4′,6-diamidino-2-phenylindole staining. High frequencies of chromosomal aberrations were detected in spermatocytes within 64 h after treatment when over 30% of the metaphases analyzed had structural aberrations (P < 0.01). Significant increases in the percentages of zygotic metaphases with structural aberrations were found only for matings that sampled treated pachytene (28-fold, P < 0.0001) and preleptotene spermatocytes (13-fold, P < 0.001). Etoposide induced mostly acentric fragments and deletions, types of aberrations expected to result in embryonic lethality, because they represent loss of genetic material. Chromosomal exchanges were rare. Etoposide treatment of pachytene cells induced aneuploidy in both spermatocytes (18-fold, P < 0.01) and zygotes (8-fold, P < 0.05). We know of no other report of an agent for which paternal exposure leads to an increased incidence of aneuploidy in the offspring. Thus, we found that therapeutic doses of etoposide affect primarily meiotic germ cells, producing unstable structural aberrations and aneuploidy, effects that are transmitted to the progeny. This finding suggests that individuals who undergo chemotherapy with etoposide may be at a higher risk for abnormal reproductive outcomes especially within the 2 months after chemotherapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increased 4N (G2/tetraploid) cell populations have been postulated to be genetically unstable intermediates in the progression to many cancers, but the mechanism by which they develop and their relationship to instability have been difficult to investigate in humans in vivo. Barrett's esophagus is an excellent model system in which to investigate the order in which genetic and cell cycle abnormalities develop relative to each other during human neoplastic progression. Neoplastic progression in Barrett's esophagus is characterized by inactivation of the p53 gene, the development of increased 4N (G2/tetraploid) cell fractions, and the appearance of aneuploid cell populations. We investigated the hypothesis that patients whose biopsies have increased 4N (G2/tetraploid) cell fractions are predisposed to progression to aneuploidy and determined the relationship between inactivation of p53 and the development of 4N abnormalities in Barrett's epithelium. Our results indicate that increased 4N (G2/tetraploid) populations predict progression to aneuploidy and that the development of 4N abnormalities is interdependent with inactivation of the p53 gene in Barrett's esophagus in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Endopolyploid cells (hereafter - polyploid cells), which contain whole genome duplications in an otherwise diploid organism, play vital roles in development and physiology of diverse organs such as our heart and liver. Polyploidy is also observed with high frequency in many tumors, and division of such cells frequently creates aneuploidy (chromosomal imbalances), a hallmark of cancer. Despite its frequent occurrence and association with aneuploidy, little is known about the specific role that polyploidy plays in diverse contexts. Using a new model tissue, the Drosophila rectal papilla, we sought to uncover connections between polyploidy and aneuploidy during organ development. Our lab previously discovered that the papillar cells of the Drosophila hindgut undergo developmentally programmed polyploid cell divisions, and that these polyploid cell divisions are highly error-prone. Time-lapse studies of polyploid mitosis revealed that the papillar cells undergo a high percentage of tripolar anaphase, which causes extreme aneuploidy. Despite this massive chromosome imbalance, we found the tripolar daughter cells are viable and support normal organ development and function, suggesting acquiring extra genome sets enables a cell to tolerate the genomic alterations incurred by aneuploidy. We further extended these findings by seeking mechanisms by which the papillar cells tolerated this resultant aneuploidy.