999 resultados para Ancillary power
Resumo:
The subject-wise distribtion of legislative competence among the three legislative jurisdictions, union, state and concurrent, gives rise to a problem of legislative conflicts in India. There does not seem to have been any study exclusively devoted to this aspect of Indian federalism. This study is an attempt in that direction. The study has been broadly divided into three parts after an historical introduction in chapter I. Chapters II to VIII deal with conflicts between the exclusive fields, chapters IX and X with conflicts in the concurrent field, and chapter XI with conflicts between the exclusive and concurrent fields. In the last chapter, i.e, chapter XII, has been collected together some conclusions which in most cases have also been noted in the course of the study
Resumo:
Problems as voltage increase at the end of a feeder, demand supply unbalance in a fault condition, power quality decline, increase of power losses, and reduction of reliability levels may occur if Distributed Generators (DGs) are not properly allocated. For this reason, researchers have been employed several solution techniques to solve the problem of optimal allocation of DGs. This work is focused on the ancillary service of reactive power support provided by DGs. The main objective is to price this service by determining the costs in which a DG incurs when it loses sales opportunity of active power, i.e, by determining the Loss of Opportunity Costs (LOC). The LOC will be determined for different allocation alternatives of DGs as a result of a multi-objective optimization process, aiming the minimization of losses in the lines of the system and costs of active power generation from DGs, and the maximization of the static voltage stability margin of the system. The effectiveness of the proposed methodology in improving the goals outlined was demonstrated using the IEEE 34 bus distribution test feeder with two DGs cosidered to be allocated. © 2011 IEEE.
Resumo:
Distributed generation (DG) systems are usually connected to the grid using power electronic converters. Power delivered from such DG sources depends on factors like energy availability and load demand. The converters used in power conversion do not operate with their full capacity all the time. The unused or remaining capacity of the converters could be used to provide some ancillary functions like harmonic and unbalance mitigation of the power distribution system. As some of these DG sources have wide operating ranges, they need special power converters for grid interfacing. Being a single-stage buck-boost inverter, recently proposed Z-source inverter (ZSI) is a good candidate for future DG systems. This paper presents a controller design for a ZSI-based DG system to improve power quality of distribution systems. The proposed control method is tested with simulation results obtained using Matlab/Simulink/PLECS and subsequently it is experimentally validated using a laboratory prototype.
Resumo:
This paper examines the ability of the doubly fed induction generator (DFIG) to deliver multiple reactive power objectives during variable wind conditions. The reactive power requirement is decomposed based on various control objectives (e.g. power factor control, voltage control, loss minimisation, and flicker mitigation) defined around different time frames (i.e. seconds, minutes, and hourly), and the control reference is generated by aggregating the individual reactive power requirement for each control strategy. A novel coordinated controller is implemented for the rotor-side converter and the grid-side converter considering their capability curves and illustrating that it can effectively utilise the aggregated DFIG reactive power capability for system performance enhancement. The performance of the multi-objective strategy is examined for a range of wind and network conditions, and it is shown that for the majority of the scenarios, more than 92% of the main control objective can be achieved while introducing the integrated flicker control scheme with the main reactive power control scheme. Therefore, optimal control coordination across the different control strategies can maximise the availability of ancillary services from DFIG-based wind farms without additional dynamic reactive power devices being installed in power networks.
Resumo:
Although pumped hydro storage is seen as a strategic key asset by grid operators, financing it is complicated in new liberalised markets. It could be argued that the optimum generation portfolio is now determined by the economic viability of generators based on a short to medium term return on investment. This has meant that capital intensive projects such as pumped hydro storage are less attractive for wholesale electricity companies because the payback periods are too long. In tandem a significant amount of wind power has entered the generation mix, which has resulted in operating and planning integration issues due to wind's inherent uncertain, varying spatial and temporal nature. These integration issues can be overcome using fast acting gas peaking plant or energy storage. Most analysis of wind power integration using storage to date has used stochastic optimisation for power system balancing or arbitrage modelling to examine techno-economic viability. In this research a deterministic dynamic programming long term generation expansion model is employed to optimise the generation mix, total system costs and total carbon dioxide emissions, and unlike other studies calculates reserve to firm wind power. The key finding of this study is that the incentive to build capital-intensive pumped hydro storage to firm wind power is limited unless exogenous market costs come very strongly into play. Furthermore it was demonstrated that reserve increases with increasing wind power showing the importance of ancillary services in future power systems. © 2014 Elsevier Ltd. All rights reserved.
Resumo:
Grid operators and electricity retailers in Ireland manage peak demand, power system balancing and grid congestion by offering relevant incentives to consumers to reduce or shift their load. The need for active consumers in the home using smart appliances has never been greater, due to increased variable renewable generation and grid constraints. In this paper an aggregated model of a single compressor fridge-freezer population is developed. A price control strategy is examined to quantify and value demand response savings during a representative winter and summer week for Ireland in 2020. The results show an average reduction in fridge-freezer operating cost of 8.2% during winter and significantly lower during summer in Ireland. A peak reduction of at least 68% of the average winter refrigeration load is achieved consistently during the week analysed using a staggering control mode. An analysis of the current ancillary service payments confirms that these are insufficient to ensure widespread uptake by the small consumer, and new mechanisms need to be developed to make becoming an active consumer attractive. Demand response is proposed as a new ancillary service called ramping capability, as the need for this service will increase with more renewable energy penetration on the power system.
Resumo:
Power systems operation in a liberalized environment requires that market players have access to adequate decision support tool, allowing them to consider all the business opportunities and take strategic decisions. Ancillary services represent a good negotiation opportunity that must be considered by market players. For this, decision support tools must include ancillary market simulation. This paper deals with ancillary services negotiation in electricity markets. The proposed concepts and methodologies are implemented in MASCEM, a multi-agent based electricity market simulator. A test case concerning the dispatch of ancillary services using two different methods (Linear Programming and Genetic Algorithm approaches) is included in the paper.
Resumo:
Electricity market players operating in a liberalized environment requires access to an adequate decision support tool, allowing them to consider all the business opportunities and take strategic decisions. Ancillary services represent a good negotiation opportunity that must be considered by market players. For this, decision support tool must include ancillary market simulation. This paper proposes two different methods (Linear Programming and Genetic Algorithm approaches) for ancillary services dispatch. The methodologies are implemented in MASCEM, a multi-agent based electricity market simulator. A test case based on California Independent System Operator (CAISO) data concerning the dispatch of Regulation Down, Regulation Up, Spinning Reserve and Non-Spinning Reserve services is included in this paper.
Resumo:
Ancillary services represent a good business opportunity that must be considered by market players. This paper presents a new methodology for ancillary services market dispatch. The method considers the bids submitted to the market and includes a market clearing mechanism based on deterministic optimization. An Artificial Neural Network is used for day-ahead prediction of Regulation Down, regulation-up, Spin Reserve and Non-Spin Reserve requirements. Two test cases based on California Independent System Operator data concerning dispatch of Regulation Down, Regulation Up, Spin Reserve and Non-Spin Reserve services are included in this paper to illustrate the application of the proposed method: (1) dispatch considering simple bids; (2) dispatch considering complex bids.
Resumo:
Recent changes in the operation and planning of power systems have been motivated by the introduction of Distributed Generation (DG) and Demand Response (DR) in the competitive electricity markets' environment, with deep concerns at the efficiency level. In this context, grid operators, market operators, utilities and consumers must adopt strategies and methods to take full advantage of demand response and distributed generation. This requires that all the involved players consider all the market opportunities, as the case of energy and reserve components of electricity markets. The present paper proposes a methodology which considers the joint dispatch of demand response and distributed generation in the context of a distribution network operated by a virtual power player. The resources' participation can be performed in both energy and reserve contexts. This methodology contemplates the probability of actually using the reserve and the distribution network constraints. Its application is illustrated in this paper using a 32-bus distribution network with 66 DG units and 218 consumers classified into 6 types of consumers.
Resumo:
The power systems operation in the smart grid context increases significantly the complexity of their management. New approaches for ancillary services procurement are essential to ensure the operation of electric power systems with appropriate levels of stability, safety, quality, equity and competitiveness. These approaches should include market mechanisms which allow the participation of small and medium distributed energy resources players in a competitive market environment. In this paper, an energy and ancillary services joint market model used by an aggregator is proposed, considering bids of several types of distributed energy resources. In order to improve economic efficiency in the market, ancillary services cascading market mechanism is also considered in the model. The proposed model is included in MASCEM – a multi-agent system electricity market simulator. A case study considering a distribution network with high penetration of distributed energy resources is presented.
Resumo:
In this paper, a novel methodology to price the reactive power support ancillary service of Distributed Generators (DGs) with primary energy source uncertainty is shown. The proposed methodology provides the service pricing based on the Loss of Opportunity Costs (LOC) calculation. An algorithm is proposed to reduce the uncertainty present in these generators using Multiobjective Power Flows (MOPFs) implemented in multiple probabilistic scenarios through Monte Carlo Simulations (MCS), and modeling the time series associated with the generation of active power from DGs through Markov Chains (MC). © 2011 IEEE.
Resumo:
Distributed Generation, microgrid technologies, two-way communication systems, and demand response programs are issues that are being studied in recent years within the concept of smart grids. At some level of enough penetration, the Distributed Generators (DGs) can provide benefits for sub-transmission and transmission systems through the so-called ancillary services. This work is focused on the ancillary service of reactive power support provided by DGs, specifically Wind Turbine Generators (WTGs), with high level of impact on transmission systems. The main objective of this work is to propose an optimization methodology to price this service by determining the costs in which a DG incurs when it loses sales opportunity of active power, i.e, by determining the Loss of Opportunity Costs (LOC). LOC occur when more reactive power is required than available, and the active power generation has to be reduced in order to increase the reactive power capacity. In the optimization process, three objectives are considered: active power generation costs of DGs, voltage stability margin of the system, and losses in the lines of the network. Uncertainties of WTGs are reduced solving multi-objective optimal power flows in multiple probabilistic scenarios constructed by Monte Carlo simulations, and modeling the time series associated with the active power generation of each WTG via Fuzzy Logic and Markov Chains. The proposed methodology was tested using the IEEE 14 bus test system with two WTGs installed. © 2011 IEEE.
Resumo:
Traditionally, ancillary services are supplied by large conventional generators. However, with the huge penetration of distributed generators (DGs) as a result of the growing interest in satisfying energy requirements, and considering the benefits that they can bring along to the electrical system and to the environment, it appears reasonable to assume that ancillary services could also be provided by DGs in an economical and efficient way. In this paper, a settlement procedure for a reactive power market for DGs in distribution systems is proposed. Attention is directed to wind turbines connected to the network through synchronous generators with permanent magnets and doubly-fed induction generators. The generation uncertainty of this kind of DG is reduced by running a multi-objective optimization algorithm in multiple probabilistic scenarios through the Monte Carlo method and by representing the active power generated by the DGs through Markov models. The objectives to be minimized are the payments of the distribution system operator to the DGs for reactive power, the curtailment of transactions committed in an active power market previously settled, the losses in the lines of the network, and a voltage profile index. The proposed methodology was tested using a modified IEEE 37-bus distribution test system. © 1969-2012 IEEE.
Resumo:
Usually, ancillary services are provided by large conventional generators; however, with the growing interest in distributed generation to satisfy energy and environmental requirements, it seems reasonable to assume that these services could also be provided by distributed generators in an economical and efficient way. In this paper, a proposal for enhancement of the capacity of active power reserve for frequency control using distributed generators is presented. The goal is to minimize the payments done by the transmission system operator to conventional and distributed generators for this ancillary service and for the energy needed to satisfy loads and system losses, subject to a set of constraints. In order to perform analysis, the proposal was implemented using data of the IEEE 30-bus transmission test system. Comparisons were performed considering conventional generators without and with distributed generators installed in the system.