929 resultados para Ancestral polymorphism


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The taxonomy of the Hanuman langur (Semnopithecus spp.), a widely distributed Asian colobine monkey, has been in a flux for a long time due to much disagreement between various classification schemes. However, results from a recent field-based morphological study were consistent with Hill's (Ceylon J Sci 21:277-305, 1939) species level classification scheme. Here we tested the validity of S. hypoleucos and S. priam, the two South Indian species recognized by Hill. To this end, one mitochondrial and four nuclear markers were sequenced from over 72 non-invasive samples of Hanuman langurs and S. johnii collected from across India. The molecular data were subjected to various tree building methods. The nuclear data was also used in a Bayesian structure analysis and to determine the genealogical sorting index of each hypothesized species. Results from nuclear data suggest that the South Indian population of Hanuman langur consists of two units that correspond to the species recognized by Hill. However in the mitochondrial tree S. johnii and S. priam were polyphyletic probably due to retention of ancestral polymorphism and/or low levels of hybridization. Implications of these results on conservation of Hanuman langurs are also discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The PRP8 intein is the most widespread intein among the Kingdom Fungi. This genetic element occurs within the prp8 gene, and is transcribed and translated simultaneously with the gene. After translation, the intein excises itself from the Prp8 protein by an autocatalytic splicing reaction, subsequently joining the N and C terminals of the host protein, which retains its functional conformation. Besides the splicing domain, some PRP8 inteins also have a homing endonuclease (HE) domain which, if functional, makes the intein a mobile element capable of becoming fixed in a population. This work aimed to study (1) The occurrence of this intein in Histoplasma capsulatum isolates (n=. 99) belonging to different cryptic species collected in diverse geographical locations, and (2) The functionality of the endonuclease domains of H. capsulatum PRP8 inteins and their phylogenetic relationship among the cryptic species. Our results suggest that the PRP8 intein is fixed in H. capsulatum populations and that an admixture or a probable ancestral polymorphism of the PRP8 intein sequences is responsible for the apparent paraphyletic pattern of the LAmA clade which, in the intein phylogeny, also encompasses sequences from LAmB isolates. The PRP8 intein sequences clearly separate the different cryptic species, and may serve as an additional molecular typing tool, as previously proposed for other fungi genus, such as Cryptococcus and Paracoccidioides. © 2013 Elsevier B.V.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Self-incompatibility (SI) systems have evolved in many flowering plants to prevent self-fertilization and thus promote outbreeding. Pear and apple, as many of the species belonging to the Rosaceae, exhibit RNase-mediated gametophytic self-incompatibility, a widespread system carried also by the Solanaceae and Plantaginaceae. Pear orchards must for this reason contain at least two different cultivars that pollenize each other; to guarantee an efficient cross-pollination, they should have overlapping flowering periods and must be genetically compatible. This compatibility is determined by the S-locus, containing at least two genes encoding for a female (pistil) and a male (pollen) determinant. The female determinant in the Rosaceae, Solanaceae and Plantaginaceae system is a stylar glycoprotein with ribonuclease activity (S-RNase), that acts as a specific cytotoxin in incompatible pollen tubes degrading cellular RNAs. Since its identification, the S-RNase gene has been intensively studied and the sequences of a large number of alleles are available in online databases. On the contrary, the male determinant has been only recently identified as a pollen-expressed protein containing a F-box motif, called S-Locus F-box (abbreviated SLF or SFB). Since F-box proteins are best known for their participation to the SCF (Skp1 - Cullin - F-box) E3 ubiquitine ligase enzymatic complex, that is involved in protein degradation through the 26S proteasome pathway, the male determinant is supposed to act mediating the ubiquitination of the S-RNases, targeting them for the degradation in compatible pollen tubes. Attempts to clone SLF/SFB genes in the Pyrinae produced no results until very recently; in apple, the use of genomic libraries allowed the detection of two F-box genes linked to each S haplotype, called SFBB (S-locus F-Box Brothers). In Japanese pear, three SFBB genes linked to each haplotype were cloned from pollen cDNA. The SFBB genes exhibit S haplotype-specific sequence divergence and pollen-specific expression; their multiplicity is a feature whose interpretation is unclear: it has been hypothesized that all of them participate in the S-specific interaction with the RNase, but it is also possible that only one of them is involved in this function. Moreover, even if the S locus male and female determinants are the only responsible for the specificity of the pollen-pistil recognition, many other factors are supposed to play a role in GSI; these are not linked to the S locus and act in a S-haplotype independent manner. They can have a function in regulating the expression of S determinants (group 1 factors), modulating their activity (group 2) or acting downstream, in the accomplishment of the reaction of acceptance or rejection of the pollen tube (group 3). This study was aimed to the elucidation of the molecular mechanism of GSI in European pear (Pyrus communis) as well as in the other Pyrinae; it was divided in two parts, the first focusing on the characterization of male determinants, and the second on factors external to the S locus. The research of S locus F-box genes was primarily aimed to the identification of such genes in European pear, for which sequence data are still not available; moreover, it allowed also to investigate about the S locus structure in the Pyrinae. The analysis was carried out on a pool of varieties of the three species Pyrus communis (European pear), Pyrus pyrifolia (Japanese pear), and Malus × domestica (apple); varieties carrying S haplotypes whose RNases are highly similar were chosen, in order to check whether or not the same level of similarity is maintained also between the male determinants. A total of 82 sequences was obtained, 47 of which represent the first S-locus F-box genes sequenced from European pear. The sequence data strongly support the hypothesis that the S locus structure is conserved among the three species, and presumably among all the Pyrinae; at least five genes have homologs in the analysed S haplotypes, but the number of F-box genes surrounding the S-RNase could be even greater. The high level of sequence divergence and the similarity between alleles linked to highly conserved RNases, suggest a shared ancestral polymorphism also for the F-box genes. The F-box genes identified in European pear were mapped on a segregating population of 91 individuals from the cross 'Abbé Fétel' × 'Max Red Bartlett'. All the genes were placed on the linkage group 17, where the S locus has been placed both in pear and apple maps, and resulted strongly associated to the S-RNase gene. The linkage with the RNase was perfect for some of the F-box genes, while for others very rare single recombination events were identified. The second part of this study was focused on the research of other genes involved in the SI response in pear; it was aimed on one side to the identification of genes differentially expressed in compatible and incompatible crosses, and on the other to the cloning and characterization of the transglutaminase (TGase) gene, whose role may be crucial in pollen rejection. For the identification of differentially expressed genes, controlled pollinations were carried out in four combinations (self pollination, incompatible, half-compatible and fully compatible cross-pollination); expression profiles were compared through cDNA-AFLP. 28 fragments displaying an expression pattern related to compatibility or incompatibility were identified, cloned and sequenced; the sequence analysis allowed to assign a putative annotation to a part of them. The identified genes are involved in very different cellular processes or in defense mechanisms, suggesting a very complex change in gene expression following the pollen/pistil recognition. The pool of genes identified with this technique offers a good basis for further study toward a better understanding of how the SI response is carried out. Among the factors involved in SI response, moreover, an important role may be played by transglutaminase (TGase), an enzyme involved both in post-translational protein modification and in protein cross-linking. The TGase activity detected in pear styles was significantly higher when pollinated in incompatible combinations than in compatible ones, suggesting a role of this enzyme in the abnormal cytoskeletal reorganization observed during pollen rejection reaction. The aim of this part of the work was thus to identify and clone the pear TGase gene; the PCR amplification of fragments of this gene was achieved using primers realized on the alignment between the Arabidopsis TGase gene sequence and several apple EST fragments; the full-length coding sequence of the pear TGase gene was then cloned from cDNA, and provided a precious tool for further study of the in vitro and in vivo action of this enzyme.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The distribution pattern of European arctic-alpine disjunct species is of growing interest among biogeographers due to the arising variety of inferred demographic histories. In this thesis I used the co-distributed mayfly Ameletus inopinatus and the stonefly Arcynopteryx compacta as model species to investigate the European Pleistocene and Holocene history of stream-inhabiting arctic-alpine aquatic insects. I used last glacial maximum (LGM) species distribution models (SDM) to derive hypotheses on the glacial survival during the LGM and the recolonization of Fennoscandia: 1) both species potentially survived glacial cycles in periglacial, extra Mediterranean refugia, and 2) postglacial recolonization of Fennoscandia originated from these refugia. I tested these hypotheses using mitochondrial sequence (mtCOI) and species specific microsatellite data. Additionally, I used future SDM to predict the impact of climate change induced range shifts and habitat loss on the overall genetic diversity of the endangered mayfly A. inopinatus.rnI observed old lineages, deep splits, and almost complete lineage sorting of mtCOI sequences between mountain ranges. These results support the hypothesis that both species persisted in multiple periglacial extra-Mediterranean refugia in Central Europe during the LGM. However, the recolonization of Fennoscandia was very different between the two study species. For the mayfly A. inopinatus I found strong differentiation between the Fennoscandian and all other populations in sequence and microsatellite data, indicating that Fennoscandia was recolonized from an extra European refugium. High mtCOI genetic structure within Fennoscandia supports a recolonization of multiple lineages from independent refugia. However, this structure was not apparent in the microsatellite data, consistent with secondary contact without sexual incompability. In contrast, the stonefly A. compacta exhibited low genetic structure and shared mtCOI haplotypes among Fennoscandia and the Black Forest, suggesting a shared Pleistocene refugium in the periglacial tundrabelt. Again, there is incongruence with the microsatellite data, which could be explained with ancestral polymorphism or female-biased dispersal. Future SDM projects major regional habitat loss for the mayfly A. inopinatus, particularly in Central European mountain ranges. By relating these range shifts to my population genetic results, I identified conservation units primarily in Eastern Europe, that if preserved would maintain high levels of the present-day genetic diversity of A. inopinatus and continue to provide long-term suitable habitat under future climate warming scenarios.rnIn this thesis I show that despite similar present day distributions the underlying demographic histories of the study species are vastly different, which might be due to differing dispersal capabilities and niche plasticity. I present genetic, climatic, and ecological data that can be used to prioritize conservation efforts for cold-adapted freshwater insects in light of future climate change. Overall, this thesis provides a next step in filling the knowledge gap regarding molecular studies of the arctic-alpine invertebrate fauna. However, there is continued need to explore the phenomenon of arctic-alpine disjunctions to help understand the processes of range expansion, regression, and lineage diversification in Europe’s high latitude and high altitude biota.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cichlid fishes have evolved tremendous morphological and behavioral diversity in the waters of East Africa. Within each of the Great Lakes Tanganyika, Malawi, and Victoria, the phenomena of hybridization and retention of ancestral polymorphism explain allele sharing across species. Here, we explore the sharing of single nucleotide polymorphisms (SNPs) between the major East African cichlid assemblages. A set of approximately 200 genic and nongenic SNPs was ascertained in five Lake Malawi species and genotyped in a diverse collection of 160 species from across Africa. We observed segregating polymorphism outside of the Malawi lineage for more than 50% of these loci; this holds similarly for genic versus nongenic SNPs, as well as for SNPs at putative CpG versus non-CpG sites. Bayesian and principal component analyses of genetic structure in the data demonstrate that the Lake Malawi endemic flock is not monophyletic and that river species have likely contributed significantly to Malawi genomes. Coalescent simulations support the hypothesis that river cichlids have transported polymorphism between lake assemblages. We observed strong genetic differentiation between Malawi lineages for approximately 8% of loci, with contributions from both genic and nongenic SNPs. Notably, more than half of these outlier loci between Malawi groups are polymorphic outside of the lake. Cichlid fishes have evolved diversity in Lake Malawi as new mutations combined with standing genetic variation shared across East Africa.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is great interest in using amplified fragment length polymorphism (AFLP) markers because they are inexpensive and easy to produce. It is, therefore, possible to generate a large number of markers that have a wide coverage of species genotnes. Several statistical methods have been proposed to study the genetic structure using AFLP's but they assume Hardy-Weinberg equilibrium and do not estimate the inbreeding coefficient, F-IS. A Bayesian method has been proposed by Holsinger and colleagues that relaxes these simplifying assumptions but we have identified two sources of bias that can influence estimates based on these markers: (i) the use of a uniform prior on ancestral allele frequencies and (ii) the ascertainment bias of AFLP markers. We present a new Bayesian method that avoids these biases by using an implementation based on the approximate Bayesian computation (ABC) algorithm. This new method estimates population-specific F-IS and F-ST values and offers users the possibility of taking into account the criteria for selecting the markers that are used in the analyses. The software is available at our web site (http://www-leca.uif-grenoble.fi-/logiciels.htm). Finally, we provide advice on how to avoid the effects of ascertainment bias.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Genes within the major histocompatibility complex (MHC) are characterized by extensive polymorphism within species and also by a remarkable conservation of contemporary human allelic sequences in evolutionarily distant primates. Mechanisms proposed to account for strict nucleotide conservation in the context of highly variable genes include the suggestion that intergenic exchange generates repeated sets of MHC DRB polymorphisms [Gyllensten, U. B., Sundvall, M. & Erlich, H. A. (1991) Proc. Natl. Acad. Sci. USA 88, 3686-3690; Lundberg, A. S. & McDevitt, H. 0. (1992) Proc. Natl. Acad. Sci. USA 89, 6545-6549]. We analyzed over 50 primate MHC DRB sequences, and identified nucleotide elements within macaque and baboon DRB6-like sequences with deletions corresponding to specific exon 2 hypervariable regions, which encode a discrete alpha helical segment of the MHC antigen combining site. This precisely localized deletion provides direct evidence implicating segmental exchange of MHC-encoded DRB gene fragments as one of the evolutionary mechanisms both generating and maintaining MHC diversity. Intergenic exchange at this site may be fundamental to the diversification of immune protection in populations by permitting alteration in the specificity of the MHC that determines the repertoire of antigens bound.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-07

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genetic polymorphisms in hepatically expressed UGT1A1 and UGT1A9 contribute to the interindividual variability i-n irinotecan disposition and toxicity. We screened UGT1A1 (UGT1A1*60, g.−3140G>A, UGT1A1*28 and UGT1A1*6) and UGT1A9 (g.−118(T)9>10 and I399C>T) genes for polymorphic variants in the promoter and coding regions, and the genotypic effect of UGT1A9 I399C>T polymorphism on irinotecan disposition in Asian cancer patients was investigated. Blood samples were collected from 45 patients after administration of irinotecan as a 90 min intravenous infusion of 375 mg/m2 once in every 3 weeks. Genotypic–phenotypic correlates showed that cancer patients heterozygous or homozygous for the I399C>T allele had approximately 2-fold lower systemic exposure to SN-38 (P<0.05) and a trend towards a higher relative extent of glucuronidation (REG) of SN-38 (P>0.05). UGT1A1–1A9 diplotype analysis showed that patients harbouring the H1/H2 (TG6GT10T/GG6GT9C) diplotype had 2.4-fold lower systemic exposure to SN-38 glucuronide (SN-38G) compared with patients harbouring the H1/H5 (TG6GT10T/GG6GT10C) diplotype (P=0.025). In conclusion, this in vivo study supports the in vitro findings of Girard et al. and suggests that the UGT1A9 I399C>T variant may be an important glucuronidating allele affecting the pharmacokinetics of SN-38 and SN-38G in Asian cancer patients receiving irinotecan chemotherapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chlamydia pneumoniae is a common human and animal pathogen associated with a wide range of upper and lower respiratory tract infections. In more recent years there has been increasing evidence to suggest a link between C. pneumoniae and chronic diseases in humans, including atherosclerosis, stroke and Alzheimer’s disease. C. pneumoniae human strains show little genetic variation, indicating that the human-derived strain originated from a common ancestor in the recent past. Despite extensive information on the genetics and morphology processes of the human strain, knowledge concerning many other hosts (including marsupials, amphibians, reptiles and equines) remains virtually unexplored. The koala (Phascolarctos cinereus) is a native Australian marsupial under threat due to habitat loss, predation and disease. Koalas are very susceptible to chlamydial infections, most commonly affecting the conjunctiva, urogenital tract and/or respiratory tract. To address this gap in the literature, the present study (i) provides a detailed description of the morphologic and genomic architecture of the C. pneumoniae koala (and human) strain, and shows that the koala strain is microscopically, developmentally and genetically distinct from the C. pneumoniae human strain, and (ii) examines the genetic relationship of geographically diverse C. pneumoniae isolates from human, marsupial, amphibian, reptilian and equine hosts, and identifies two distinct lineages that have arisen from animal-to-human cross species transmissions. Chapter One of this thesis explores the scientific problem and aims of this study, while Chapter Two provides a detailed literature review of the background in this field of work. Chapter Three, the first results chapter, describes the morphology and developmental stages of C. pneumoniae koala isolate LPCoLN, as revealed by fluorescence and transmission electron microscopy. The profile of this isolate, when cultured in HEp-2 human epithelial cells, was quite different to the human AR39 isolate. Koala LPCoLN inclusions were larger; the elementary bodies did not have the characteristic pear-shaped appearance, and the developmental cycle was completed within a shorter period of time (as confirmed by quantitative real-time PCR). These in vitro findings might reflect biological differences between koala LPCoLN and human AR39 in vivo. Chapter Four describes the complete genome sequence of the koala respiratory pathogen, C. pneumoniae LPCoLN. This is the first animal isolate of C. pneumoniae to be fully-sequenced. The genome sequence provides new insights into genomic ‘plasticity’ (organisation), evolution and biology of koala LPCoLN, relative to four complete C. pneumoniae human genomes (AR39, CWL029, J138 and TW183). Koala LPCoLN contains a plasmid that is not shared with any of the human isolates, there is evidence of gene loss in nucleotide salvage pathways, and there are 10 hot spot genomic regions of variation that were previously not identified in the C. pneumoniae human genomes. Sequence (partial-length) from a second, independent, wild koala isolate (EBB) at several gene loci confirmed that the koala LPCoLN isolate was representative of a koala C. pneumoniae strain. The combined sequence data provides evidence that the C. pneumoniae animal (koala LPCoLN) genome is ancestral to the C. pneumoniae human genomes and that human infections may have originated from zoonotic infections. Chapter Five examines key genome components of the five C. pneumoniae genomes in more detail. This analysis reveals genomic features that are shared by and/or contribute to the broad ecological adaptability and evolution of C. pneumoniae. This analysis resulted in the identification of 65 gene sequences for further analysis of intraspecific variation, and revealed some interesting differences, including fragmentation, truncation and gene decay (loss of redundant ancestral traits). This study provides valuable insights into metabolic diversity, adaptation and evolution of C. pneumoniae. Chapter Six utilises a subset of 23 target genes identified from the previous genomic comparisons and makes a significant contribution to our understanding of genetic variability among C. pneumoniae human (11) and animal (6 amphibian, 5 reptilian, 1 equine and 7 marsupial hosts) isolates. It has been shown that the animal isolates are genetically diverse, unlike the human isolates that are virtually clonal. More convincing evidence that C. pneumoniae originated in animals and recently (in the last few hundred thousand years) crossed host species to infect humans is provided in this study. It is proposed that two animal-to-human cross species events have occurred in the context of the results, one evident by the nearly clonal human genotype circulating in the world today, and the other by a more animal-like genotype apparent in Indigenous Australians. Taken together, these data indicate that the C. pneumoniae koala LPCoLN isolate has morphologic and genomic characteristics that are distinct from the human isolates. These differences may affect the survival and activity of the C. pneumoniae koala pathogen in its natural host, in vivo. This study, by utilising the genetic diversity of C. pneumoniae, identified new genetic markers for distinguishing human and animal isolates. However, not all C. pneumoniae isolates were genetically diverse; in fact, several isolates were highly conserved, if not identical in sequence (i.e. Australian marsupials) emphasising that at some stage in the evolution of this pathogen, there has been an adaptation/s to a particular host, providing some stability in the genome. The outcomes of this study by experimental and bioinformatic approaches have significantly enhanced our knowledge of the biology of this pathogen and will advance opportunities for the investigation of novel vaccine targets, antimicrobial therapy, or blocking of pathogenic pathways.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Staphylococcus aureus is a common pathogen that causes a variety of infections including soft tissue infections, impetigo, septicemia toxic shock and scalded skin syndrome. Traditionally, Methicillin-Resistant Staphylococcus aureus (MRSA) was considered a Hospital-Acquired (HA) infection. It is now recognised that the frequency of infections with MRSA is increasing in the community, and that these infections are not originating from hospital environments. A 2007 report by the Centers for Disease Control and Prevention (CDC) stated that Staphylococcus aureus is the most important cause of serious and fatal infections in the USA. Community-Acquired MRSA (CA-MRSA) are genetically diverse and distinct, meaning they are able to be identified and tracked by way of genotyping. Genotyping of MRSA using Single nucleotide polymorphisms (SNPs) is a rapid and robust method for monitoring MRSA, specifically ST93 (Queensland Clone) dissemination in the community. It has been shown that a large proportion of CA-MRSA infections in Queensland and New South Wales are caused by ST93. The rationale for this project was that SNP analysis of MLST genes is a rapid and cost-effective method for genotyping and monitoring MRSA dissemination in the community. In this study, 16 different sequence types (ST) were identified with 41% of isolates identified as ST93 making it the predominate clone. Males and Females were infected equally with an average patient age of 45yrs. Phenotypically, all of the ST93 had an identical antimicrobial resistance pattern. They were resistant to the β-lactams – Penicillin, Flu(di)cloxacillin and Cephalothin but sensitive to all other antibiotics tested. Virulence factors play an important role in allowing S. aureus to cause disease by way of colonising, replication and damage to the host. One virulence factor of particular interest is the toxin Panton-Valentine leukocidin (PVL), which is composed of two separate proteins encoded by two adjacent genes. PVL positive CA-MRSA are shown to cause recurrent, chronic or severe skin and soft tissue infections. As a result, it is important that PVL positive CA-MRSA is genotyped and tracked. Especially now that CA-MRSA infections are more prevalent than HA-MRSA infections and are now deemed endemic in Australia. 98% of all isolates in this study tested positive for the PVL toxin gene. This study showed that PVL is present in many different community based ST, not just ST93, which were all PVL positive. With this toxin becoming entrenched in CA-MRSA, genotyping would provide more accurate data and a way of tracking the dissemination. PVL gene can be sub-typed using an allele-specific Real-Time PCR (RT-PCR) followed by High resolution meltanalysis. This allows the identification of PVL subtypes within the CA-MRSA population and allow the tracking of these clones in the community.