6 resultados para Anaxagorea dolichocarpa
Resumo:
Purpose: To investigate the phytochemistry and cytotoxic activity of stem bark extracts from Genus dolichocarpa and Duguetia chrysocarpa - two species of the Annonaceae family. Methods: The crude ethanol bark extracts (EtOH) of the plants were obtained by maceration. The crude extracts were suspended in a mixture of methanol (MeOH) and water (H2O) (proportion 3:7 v/v) and partitioned with hexane, chloroform (CHCl3) and ethyl acetate (AcOEt) in ascending order of polarity to obtain the respective fractions. The extracts were evaluated on thin layer chromatography (TLC) plates of silica gel to highlight the main groups of secondary metabolites. Cytotoxicity was tested against human tumor cell lines - OVCAR-8 (ovarian), SF-295 (brain) and HCT-116 (colon) - using 3- (4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. Results: The screening results demonstrated that all the extracts were positive for the presence of flavonoids and tannins. The presence of alkaloids also was detected in some extracts. The hexane extract of A. dolichocarpa showed the strongest cytotoxicity against HCT-116 with cell growth inhibition of 89.02 %. Conclusion: The findings demonstrate for the first time the cytotoxic activity of the extracts of A. dolichocarpa and D. chrysocarpa, thus providing some evidence that plants of the Annonaceae family are a source of active secondary metabolites with cytotoxic activity.
Resumo:
A total of 24 extracts from 14 plant species collected at the state of Minas Gerais, Brazil, and belonging to five botanical families (Annonaceae, Apocynaceae, Ochnaceae, Polygonaceae and Vitaceae) was screened for cytotoxicity in cultured Vero cells and for antiviral activity against human herpes virus type 1 (HSV-1), vaccinia virus (VACV) and murine encephalomyocarditis virus (EMCV). The highest cytotoxicity (CC 50 < 10 μg/mL) was observed for the ethanol extracts from Annona coriacea fruits and seeds. Extracts from Hancornia speciosa, Ouratea castaneafolia and O. semisrrata were the only ones that have shown activity against all the three viruses assayed. Extracts from Polygonum spectabile, Hancornia speciosa, Himatanthus phagedaenica, Ouratea spectabilis and O. semiserrata were the most active against HSV-1 (EC 50 < 50 mg/mL), with favorable SI values (8.0 to 10.0). Hancornia speciosa and Anaxagorea dolichocarpa were the most active against EMCV (EC 50 50 - 100 μg/mL), with reasonable SI values (5.2 to 6.1), while moderate to low activity (EC 50 > 100 μg/mL) was observed for Ouratea spectabilis and O. semiserrata. A total of 7 plant species, Ouratea semiserrata, O. spectabilis, O. castanaeafolia, Rollinia laurifolia, Cissus erosa, Polygonum spectabile, and Hancornia speciosa, were active against VACV, disclosing EC50 < 50 μg/mL and SI values ranging from 6.6 to 67.3. In total, 10 out of the 14 species were selected from a literature survey on plants used to treat viral diseases in Brazil; these species were responsible for 70% of the positive results.
Resumo:
O presente estudo compara a biologia floral e polinização de espécies de palmeiras e anonáceas que apresentam termogênese. Nos arredores de Manaus (AM) foram estudadas onze espécies de palmeiras pertencentes aos gêneros Astrocaryum, Attalea, Bactris e Oenocarpus e nove espécies de anonáceas dos gêneros Anaxagorea, Duguetia e Xylopia. As palmeiras que apresentam termogênese são monóicas e a antese das inflorescências ocorre em períodos que variam de dois dias até cinco semanas, sempre no período noturno. As flores das espécies de anonáceas são protogínicas com a antese ocorrendo entre dois dias, podendo ser diurna ou noturna. Nos representantes das duas famílias os insetos visitantes são atraídos pelo odor emitido pelas flores que é intensificado através da termogênese. Os odores podem ser agradáveis semelhante ao de frutos maduros ou desagradáveis e pungentes. Os insetos visitantes em sua maioria são coleópteros das famílias Scarabaeidae, Nitidulidae, Staphylinidae, Curculionidae e Chrysomelidae, trips e moscas Drosophilidae. Além desses, as flores das palmeiras são visitadas por abelhas, vespas, formigas e moscas. Na área estudada, a polinização por coleópteros foi o modo mais freqüente das espécies de palmeiras e anonáceas com termogênese. É notável que algumas espécies das duas famílias são visitadas pelas mesmas famílias, e inclusive espécies de coleópteros. Supõe-se que adaptações morfológicas e fisiológicas similares na biologia floral das duas famílias, inclusive dos componentes odoríferos sejam responsáveis por essa atração.
Resumo:
Flowers of Annonaceae are characterized by fleshy petals, many stamens with hard connective shields and numerous carpels with sessile stigmas often covered by sticky secretions. The petals of many representatives during anthesis form a closed pollination chamber. Protogynous dichogamy with strong scent emissions especially during the pistillate stage is a character of nearly all species. Scent emissions can be enhanced by thermogenesis. The prevailing reproductive system in the family seems to be self-compatibility. The basal genus Anaxagorea besides exhibiting several ancestral morphological characters has also many characters which reappear in other genera. Strong fruit-like scents consisting of fruit-esters and alcohols mainly attract small fruit-beetles (genus Colopterus, Nitidulidae) as pollinators, as well as several other beetles (Curculionidae, Chrysomelidae) and fruit-flies (Drosophilidae), which themselves gnaw on the thick petals or their larvae are petal or ovule predators. The flowers and the thick petals are thus a floral brood substrate for the visitors and the thick petals of Anaxagorea have to be interpreted as an antipredator structure. Another function of the closed thick petals is the production of heat by accumulated starch, which enhances scent emission and provides a warm shelter for the attracted beetles. Insight into floral characters and floral ecology of Anaxagorea, the sister group of the rest of the Annonaceae, is particularly important for understanding functional evolution and diversification of the family as a whole. As beetle pollination (cantharophily) is plesiomorphic in Anaxagorea and in Annonaceae, characters associated with beetle pollination appear imprinted in members of the whole family. Pollination by beetles (cantharophily) is the predominant mode of the majority of species worldwide. Examples are given of diurnal representatives (e.g., Guatteria, Duguetia, Annona) which function on the basis of fruit-imitating flowers attracting mainly fruit-inhabiting nitidulid beetles, as well as nocturnal species (e.g., large-flowered Annona and Duguetia species), which additionally to most of the diurnal species exhibit strong flower warming and provide very thick petal tissues for the voracious dynastid scarab beetles (Dynastinae, Scarabaeidae). Further examples will show that a few Annonaceae have adapted in their pollination also to thrips, flies, cockroaches and even bees. Although this non-beetle pollinated species have adapted in flower structure and scent compounds to their respective insects, they still retain some of the specialized cantharophilous characters of their ancestors.
Resumo:
Há, no Brasil, 29 gêneros e 386 espécies de Annonaceae, distribuídas principalmente na Amazônia, mas também na Mata Atlântica e no Cerrado. As Annonaceae estão classificadas em quatro subfamílias, Anaxagoreoideae, Annonoideae, Ambavioideae e Malmeoideae. Anaxagoreoideae inclui apenas Anaxagorea, com 14 espécies no Brasil. Ambavioideae é composto por nove gêneros, mas apenas Tetrameranthus ocorre no Brasil, com três espécies. Annonoideae é a maior subfamília, com 51 gêneros, dos quais 12 ocorrem no Brasil. Estão aqui incluídos Annona, Duguetia, Guatteria e Xylopia, os gêneros mais representativos da família na flora brasileira. Malmeoideae inclui principalmente gêneros asiáticos, e apenas os representantes da tribo Malmeeae, com 13 gêneros, ocorrem no Brasil.
Resumo:
Annonaceae and Myristicaceae, the two largest families of Magnoliales, are pantropical groups of uncertain geographic history. The most recent morphological and molecular phylogenetic analyses identify the Asian-American genus Anaxagorea as sister to all other Annonaceae and the ambavioids, consisting of small genera endemic to South America, Africa, Madagascar, and Asia, as a second branch. However, most genera form a large clade in which the basal lines are African, and South American and Asian taxa are more deeply nested. Although it has been suggested that Anaxagorea was an ancient Laurasian line, present data indicate that this genus is basically South American. These considerations may mean that the family as a whole began its radiation in Africa and South America in the Late Cretaceous, when the South Atlantic was narrower, and several lines dispersed from Africa-Madagascar into Laurasia as the Tethys closed in the Tertiary. This scenario is consistent with the occurrence of annonaceous seeds in the latest Cretaceous of Nigeria and the Eocene of England and with molecular dating of the family. Based on distribution of putatively primitive taxa in Madagascar and derived taxa in Asia, it has been suggested that Myristicaceae had a similar history. Phylogenetic analyses of Myristicaceae, using morphology and several plastid regions, confirm that the ancestral area was Africa-Madagascar and that Asian taxa are derived. However, Myristicaceae as a whole show strikingly lower molecular divergence than Annonaceae, indicating either a much younger age or a marked slowdown in molecular evolution. The fact that the oldest diagnostic fossils of Myristicaceae are Miocene seeds might be taken as evidence that Myristicaceae are much younger than Annonaceae, but this is implausible in requiring transoceanic dispersal of their large, animal-dispersed seeds.