925 resultados para Anatomical plasticity
Resumo:
Inferences about leaf anatomical characteristics had largely been made by manually measuring diverse leaf regions, such as cuticle, epidermis and parenchyma to evaluate differences caused by environmental variables. Here we tested an approach for data acquisition and analysis in ecological quantitative leaf anatomy studies based on computer vision and pattern recognition methods. A case study was conducted on Gochnatia polymorpha (Less.) Cabrera (Asteraceae), a Neotropical savanna tree species that has high phenotypic plasticity. We obtained digital images of cross-sections of its leaves developed under different light conditions (sun vs. shade), different seasons (dry vs. wet) and in different soil types (oxysoil vs. hydromorphic soil), and analyzed several visual attributes, such as color, texture and tissues thickness in a perpendicular plane from microscopic images. The experimental results demonstrated that computational analysis is capable of distinguishing anatomical alterations in microscope images obtained from individuals growing in different environmental conditions. The methods presented here offer an alternative way to determine leaf anatomical differences. © 2013 Elsevier B.V.
Resumo:
Leaf and wood plasticity are key elements in the survival of widely distributed plant species. Little is known, however, about variation in stomatal distribution in the leaf epidermis and its correlation with the dimensions of conducting cells in wood. This study aimed at testing the hypothesis that Podocarpus lambertii, a conifer tree, possesses a well-defined pattern of stomatal distribution, and that this pattern can vary together with the dimensions of stem tracheids as a possible strategy to survive in climatically different sites. Leaves and wood were sampled from trees growing in a cold, wet site in south-eastern Brazil and in a warm, dry site in north-eastern Brazil. Stomata were thoroughly mapped in leaves from each study site to determine a spatial sampling strategy. Stomatal density, stomatal index and guard cell length were then sampled in three regions of the leaf: near the midrib, near the leaf margin and in between the two. This sampling strategy was used to test for a pattern and its possible variation between study sites. Wood and stomata data were analysed together via principal component analysis. The following distribution pattern was found in the south-eastern leaves: the stomatal index was up to 25 higher in the central leaf region, between the midrib and the leaf margin, than in the adjacent regions. The inverse pattern was found in the north-eastern leaves, in which the stomatal index was 10 higher near the midrib and the leaf margin. This change in pattern was accompanied by smaller tracheid lumen diameter and length. Podocarpus lambertii individuals in sites with higher temperature and lower water availability jointly regulate stomatal distribution in leaves and tracheid dimensions in wood. The observed stomatal distribution pattern and variation appear to be closely related to the placement of conducting tissue in the mesophyll.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Gochnatia polymorpha (Less.) Cabrera é uma espécie de Asteraceae com ampla distribuição no bioma cerrado, sendo encontrada em diversas fisionomias florestais da região sudeste do Brasil. O presente estudo descreve alguns caracteres anatômicos foliares dessa espécie e os analisa quantitativamente em função de sua ocorrência nas formações florestais e também das diferenças de luminosidade. Foram encontradas diferenças quantitativas em todos os parâmetros anatômicos analisados. Os resultados demonstram que a alta plasticidade anatômica foliar nesta espécie pode ser considerada como uma vantagem adaptativa que a permite ocorrer em diversos ambientes do cerrado.
Resumo:
Gochnatia polymorpha (Less.) Cabrera is a widespread tree species found in different physiognomies of neotropical savanna (cerrado) formations of south-eastern Brazil. The present study describes some leaf anatomical characteristics of this species as a function of the time of leaf flush, during dry or wet seasons. This species presents anatomical plasticity in the cuticle, palisade parenchyma and abaxial epidermis as well as in stomatal size and stomatal and trichome density, which are leaf structures linked with water-status control. Leaf structure changed to suit the particular environmental conditions during dry and wet seasons. The production of different wet-and dry-season leaf types in G. polymorpha could be a response to drought and an adaptation to environmental constraints in the cerrado.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A utilização de gradientes ambientais no estudo de comunidades vegetais possibilita a eleição de sítios onde há a predominância de um fator abiótico que determina o sucesso ou o fracasso de espécies ao longo de sua extensão. Entre as inúmeras ferramentas utilizadas no estudo de gradientes climáticos, se destaca a anatomia do lenho, pois, é um ramo da ciência que permite analisar, além dos aspectos espaciais, os aspectos temporais dos sítios por meio dos anéis de crescimento. Além disso, a ampla distribuição das plantas lenhosas ao longo do globo possibilita análises em praticamente todos os tipos de biomas e ecossistemas terrestres. Dentro desse contexto estão os bosques andino-patagônicos de Araucaria araucana (Pehuén) ao norte de sua distribuição na Argentina. Esses bosques ocupam territórios caracterizados por um acentuado gradiente de precipitação, que vai de cerca de 3000 a 100 milímetros anuais, entre a cordilheira do Andes e a estepe patagônica, que os define como bosques mésicos e xéricos, com diferenças ecológicas que condicionam a formação vegetal, dinâmica, estrutura, relações com o clima e vulnerabilidade em cenários de mudanças ambientais. O objetivo do projeto foi descrever e analisar comparativamente a estrutura anatômica do lenho de 33 espécies arbóreas e arbustivas ocorrentes ao longo de um gradiente de precipitação, entre a encosta da cordilheira dos Andes e a estepe Patagônica, para verificar possíveis alterações anatômicas que permitam a determinação de tendências e elucidem os limites de distribuição das espécies. Foram coletadas amostras não destrutivas de lenho durante três expedições para a Patagônia entre 2012 e 2014, seguidas de procedimentos laboratoriais de confeccção de lâminas histológicas, preparo de amostras para análises dendrocronológicas, captura de imagens com câmeras acopladas a microscópios óptico e eletrônico de varredura, mensurações, descrições e análises comparativas com o auxílio de softwares. Foram identificados caracteres anatômicos exclusivos de sítios secos e úmidos que permitiram a caracterização, posicionamento ao longo do gradiente de precipitação e grupamento de espécies xerófitas e mesófitas; A ultra-estrutura das pontoações de traqueídeos de Araucaria araucana apresentou diferenças marcantes na frequência e porosidade de suas membranas, sendo maior e menos porosas em sítios xéricos, e menor e mais porosas nos mésicos; a chave dicotômica microscópica permitiu a identificação das 32 espécies arbustivas, as espécies Chuquiraga oppositifolia e Nothofagus antarctica apresentaram potencial dendrocronológico, e foram identificadas tendências anatômicas latitudinais influenciadas pelo clima nos extremos da América do Sul. A anatomia do lenho se mostrou uma ferramenta confiável no estudo de um gradiente de precipitação na Patagônia argentina, e os resultados apontam para riscos de embolismos e morte induzida por falha no sistema hidráulico de Araucaria araucana ao longo de todo o gradiente, em função do atual cenário climático, e suas projeções em médio e longo prazos.
Resumo:
The objective of this study was to examine the influence of sensory experience on the synaptic circuitry of the cortex. For this purpose, the quantitative distribution of the overall and of the gamma-aminobutyric acid (GABA) population of synaptic contacts was investigated in each layer of the somatosensory barrel field cortex of rats which were sensory deprived from birth by continuously removing rows of whiskers. Whereas there were no statistically significant changes in the quantitative distribution of the overall synaptic population, the number and proportion of GABA-immunopositive synaptic contacts were profoundly altered in layer IV of the somatosensory cortex of sensory-deprived animals. These changes were attributable to a specific loss of as many as two-thirds of the GABA contacts targeting dendritic spines. Thus, synaptic contacts made by GABA terminals in cortical layer IV and, in particular, those targeting dendritic spines represent a structural substrate of experience-dependent plasticity. Furthermore, since in this model of cortical plasticity the neuronal receptive-field properties are known to be affected, we propose that the inhibitory control of dendritic spines is essential for the elaboration of these functional properties.
Resumo:
The group I metabotropic glutamate receptor 5 (mGluR5) has been implicated in the development of cortical sensory maps. However, its precise roles in the synaptic function and plasticity of thalamocortical (TC) connections remain unknown. Here we first show that in mGluR5 knockout (KO) mice bred onto a C57BL6 background cytoarchitectonic differentiation into barrels is missing, but the representations for large whiskers are identifiable as clusters of TC afferents. The altered dendritic morphology of cortical layer IV spiny stellate neurons in mGluR5 KO mice implicates a role for mGluR5 in the dendritic morphogenesis of excitatory neurons. Next, in vivo single-unit recordings of whisker-evoked activity in mGluR5 KO adults demonstrated a preserved topographical organization of the whisker representation, but a significantly diminished temporal discrimination of center to surround whiskers in the responses of individual neurons. To evaluate synaptic function at TC synapses in mGluR5 KO mice, whole-cell voltage-clamp recording was conducted in acute TC brain slices prepared from postnatal day 4-11 mice. At mGluR5 KO TC synapses, N-methyl-D-aspartate (NMDA) currents decayed faster and synaptic strength was more easily reduced, but more difficult to strengthen by Hebbian-type pairing protocols, despite a normal developmental increase in alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-mediated currents and presynaptic function. We have therefore demonstrated that mGluR5 is required for synaptic function/plasticity at TC synapses as barrels are forming, and we propose that these functional alterations at the TC synapse are the basis of the abnormal anatomical and functional development of the somatosensory cortex in the mGluR5 KO mouse.
Resumo:
Ample evidence indicates that inhibitory control (IC), a key executive component referring to the ability to suppress cognitive or motor processes, relies on a right-lateralized fronto-basal brain network. However, whether and how IC can be improved with training and the underlying neuroplastic mechanisms remains largely unresolved. We used functional and structural magnetic resonance imaging to measure the effects of 2 weeks of training with a Go/NoGo task specifically designed to improve frontal top-down IC mechanisms. The training-induced behavioral improvements were accompanied by a decrease in neural activity to inhibition trials within the right pars opercularis and triangularis, and in the left pars orbitalis of the inferior frontal gyri. Analyses of changes in brain anatomy induced by the IC training revealed increases in grey matter volume in the right pars orbitalis and modulations of white matter microstructure in the right pars triangularis. The task-specificity of the effects of training was confirmed by an absence of change in neural activity to a control working memory task. Our combined anatomical and functional findings indicate that differential patterns of functional and structural plasticity between and within inferior frontal gyri enhanced the speed of top-down inhibition processes and in turn IC proficiency. The results suggest that training-based interventions might help overcoming the anatomic and functional deficits of inferior frontal gyri manifesting in inhibition-related clinical conditions. More generally, we demonstrate how multimodal neuroimaging investigations of training-induced neuroplasticity enable revealing novel anatomo-functional dissociations within frontal executive brain networks. Hum Brain Mapp 36:2527-2543, 2015. © 2015 Wiley Periodicals, Inc.
Resumo:
This study compared the morphological and anatomical variations of the leaves of four shade-tolerant tree species Allophylus edulis (St.-Hil.) Radlk (Sapindaceae), Casearia sylvestris Sw. (Salicaceae), Cupania vernalis Cambess. (Sapindaceae) and Luehea divaricata Mart. (Malvaceae) from a fragment of Araucaria forest in two developmental stages. Morphological and anatomical traits, such as leaf and tissue thickness, leaf area, leaf dry mass, specific leaf area, leaf density and stomata density were measured from 30 leaves of each developmental stage. The phenotypic plasticity index was also calculated for each quantitative trait. The results showed that the four species presented higher mean values for specific leaf area and spongy/palisade parenchyma ratio at young stage, and higher mean values for stomata density, total and palisade parenchyma thickness in the adult stage. The plasticity index demonstrated that L. divricata presented highest plasticity for both the morphological and anatomical traits while A. edulis displayed the lowest plasticity index. The results of this study indicated that the leaves of these species exhibited distinct morphological traits at each stage of development to cope with acting environmental factors.
Resumo:
The granule cells of the dentate gyrus give rise to thin unmyelinated axons, the mossy fibers. They form giant presynaptic boutons impinging on large complex spines on the proximal dendritic portions of hilar mossy cells and CA3 pyramidal neurons. While these anatomical characteristics have been known for some time, it remained unclear whether functional changes at mossy fiber synapses such as long-term potentiation (LTP) are associated with structural changes. Since subtle structural changes may escape a fine-structural analysis when the tissue is fixed by using aldehydes and is dehydrated in ethanol, rapid high-pressure freezing (HPF) of the tissue was applied. Slice cultures of hippocampus were prepared and incubated in vitro for 2 weeks. Then, chemical LTP (cLTP) was induced by the application of 25 mM tetraethylammonium (TEA) for 10 min. Whole-cell patch-clamp recordings from CA3 pyramidal neurons revealed a highly significant potentiation of mossy fiber synapses when compared to control conditions before the application of TEA. Next, the slice cultures were subjected to HPF, cryosubstitution, and embedding in Epon for a fine-structural analysis. When compared to control tissue, we noticed a significant decrease of synaptic vesicles in mossy fiber boutons and a concomitant increase in the length of the presynaptic membrane. On the postsynaptic side, we observed the formation of small, finger-like protrusions, emanating from the large complex spines. These short protrusions gave rise to active zones that were shorter than those normally found on the thorny excrescences. However, the total number of active zones was significantly increased. Of note, none of these cLTP-induced structural changes was observed in slice cultures from Munc13-1 deficient mouse mutants showing severely impaired vesicle priming and docking. In conclusion, application of HPF allowed us to monitor cLTP-induced structural reorganization of mossy fiber synapses.
Resumo:
Previous studies have shown that short-term sensitization of the Aplysia siphon-withdrawal reflex circuit results in multiple sites of change in synaptic efficacy. In this dissertation I have used a realistic modeling approach (using an integrate-and-fire scheme), in conjunction with electrophysiological experiments, to evaluate the contribution of each site of plasticity to the sensitized response.^ This dissertation contains a detailed description of methodology for the construction of the model circuit, consisting of the LFS motor neurons and ten interneurons known to convey excitatory input to them. The model replicates closely the natural motor neuron firing response to a brief tactile stimulus.^ The various circuit elements have different roles for producing circuit output. For example, the sensory connections onto the motor neuron are important for the production of the phasic response, while the polysynaptic interneuronal connections are important for producing the tonic response.^ The multiple sites of plasticity that produce changes in circuit output also have specialized roles. Presynaptic facilitation of the sensory neuron to LFS connection enhances only the phasic component of the motor neuron firing response. The sensory neuron to interneuron connections primarily enhance the tonic component of the motor neuron firing response. Also, the L29 posttetanic potentiation and the L30 presynaptic inhibition primarily enhance the tonic component of the motor neuron firing response. Finally, the information content at the various sites of plasticity can shift with changes in stimulus intensity. This suggests that while the sites of plasticity encoding memory are fixed, the information content at these sites can be dynamic, shifting in anatomical location with changes in the intensity of the test stimulus.^ These sites of plasticity also produce specific changes in the behavioral response. Sensory-LFS plasticity selectively increases the amplitude of the behavioral response, and has no effect on the duration of the behavioral response. Interneuronal plasticity (L29 and L30) affects both the amplitude and duration of the behavioral response. Other sensory plasticity also affect both the amplitude and duration of the behavioral response, presumably by increasing the recruitment of the interneurons, which provide all of the effect on duration of the behavioral response. ^
Resumo:
Trabecular bone is a porous mineralized tissue playing a major load bearing role in the human body. Prediction of age-related and disease-related fractures and the behavior of bone implant systems needs a thorough understanding of its structure-mechanical property relationships, which can be obtained using microcomputed tomography-based finite element modeling. In this study, a nonlinear model for trabecular bone as a cohesive-frictional material was implemented in a large-scale computational framework and validated by comparison of μFE simulations with experimental tests in uniaxial tension and compression. A good correspondence of stiffness and yield points between simulations and experiments was found for a wide range of bone volume fraction and degree of anisotropy in both tension and compression using a non-calibrated, average set of material parameters. These results demonstrate the ability of the model to capture the effects leading to failure of bone for three anatomical sites and several donors, which may be used to determine the apparent behavior of trabecular bone and its evolution with age, disease, and treatment in the future.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06