51 resultados para Anandamide
Resumo:
Rationale: Central cannabinoid systems have been implicated in appetite control through the respective hyperphagic and anorectic actions of CB1 agonists and antagonists. The motivational changes underlying these actions remain to be determined, but may involve alterations to food palatability. Objectives: The mode of action of cannabinoids on ingestion was investigated by examining the effects of exogenous and endogenous agonists, and a selective CB1 receptor antagonist, on licking microstructure in rats ingesting a palatable sucrose solution. Methods: Microstructural analyses of licking for a 10% sucrose solution was performed over a range of agonist and antagonist doses administered to non-deprived, male Lister hooded rats. Results: Delta(9)-tetrahydrocannabinol (0.5, 1 and 3 mg/kg) and anandamide (1 mg/kg and 3 mg/kg) significantly increased total number of licks. This was primarily due to an increase in bout duration rather than bout number. There was a nonsignificant increase in total licks following administration of 2-arachidonoyl glycerol (0.2, 1.0 and 2.0 mg/kg), whereas administration of the CB1 antagonist SR141716 (1 mg/kg and 3 mg/kg) significantly decreased total licks. All drugs, with the exception of anandamide, significantly decreased the intra-bout lick rate. An exponential function fitted to the cumulative lick rate curves for each drug revealed that all compounds altered the asymptote of this function without having any marked effects on the exponent. Conclusions: These data are consistent with endocannabinoid involvement in the mediation of food palatability.
Resumo:
CB1, TRPV1 and NO can regulate glutamate release and modify defensive behaviors in regions related to defensive behavior such as the dorsolateral periaqueductal gray (dIPAG). A possible interaction between the endocannabinoid and nitrergic systems in this area, however, has not been investigated yet. The objective of the present work was to verify if activation of CB1 or TRPV1 receptors could interfere in the flight responses induced in rats by the injection of SIN-1, an NO donor, into the dIPAG. The results showed that local administration of a low dose (5 pmol) of anandamide (AEA) attenuated the flight responses, measured by the total distance moved and maximum speed in an open arena, induced by intra-dIPAG microinjection of SIN-1 (150 nmol). URB597 (0.1 nmol), an inhibitor of anandamide metabolism, produced similar effects. When animals were locally treated with the CB1 receptor antagonist AM251 the effective AEA dose (5 pmol) increased, rather than decreased, the flight reactions induced by SIN1-1. Higher (50-200 nmol) doses of AEA were ineffective and even tended to potentiate the SIN-1 effect. The TRPV1 antagonist capsazepine (CPZ, 30 nmol) prevented SIN-1 effects and attenuated the potentiation of its effect by the higher (200 nmol) AEA dose. The results indicate that AEA can modulate in a dual way the pro-aversive effects of NO in the dIPAG by activating CB1 or TRPV1 receptors. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Impaired vascular function, manifested by an altered ability of the endothelium to release endothelium-derived relaxing factors and endothelium-derived contracting factors, is consistently reported in obesity. Considering that the endothelium plays a major role in the relaxant response to the cannabinoid agonist anandamide, the present study tested the hypothesis that vascular relaxation to anandamide is decreased in obese rats. Mechanisms contributing to decreased anandamide-induced vasodilation were determined. Resistance mesenteric arteries from young obese Zucker rats (OZRs) and their lean counterparts (LZRs) were used. Vascular reactivity was evaluated in a myograph for isometric tension recording. Protein expression and localization were analyzed by Western blotting and immunofluorescence, respectively. Vasorelaxation to anandamide, acetylcholine, and sodium nitroprusside, as well as to CB1, CB2, and TRPV1 agonists was decreased in endothelium-intact mesenteric arteries from OZRs. Incubation with an AMP-dependent protein kinase (AMPK) activator or a fatty acid amide hydrolase inhibitor restored anandamide-induced vascular relaxation in OZRs. CB1 and CB2 receptors protein expression was decreased in arteries from OZRs. Incubation of mesenteric arteries with anandamide evoked endothelial nitric oxide synthase (eNOS), AMPK and acetyl CoA carboxylase phosphorylation in LZRs, whereas it decreased phosphorylation of these proteins in OZRs. In conclusion, obesity decreases anandamide-induced relaxation in resistance arteries. Decreased cannabinoid receptors expression, increased anandamide degradation, decreased AMPK/eNOS activity as well as impairment of the response mediated by TRPV1 activation seem to contribute to reduce responses to cannabinoid agonists in obesity.
Resumo:
Cannabinoids are implicated in the control of cell proliferation, but little is known about the role of the endocannabinoid system in human malignant melanoma. This study was aimed at characterizing the in vitro antitumor activity of anandamide (AEA) in A375 melanoma cells. The mRNA expression of genes that code for proteins involved in the metabolism and in the mechanism of AEA action was assessed by RT-PCR. Cell viability was tested using WST-1 assay and the apoptotic cell death was determined by measuring caspase 3/7 activities. A375 cells express high levels of fatty acid amide hydrolase (FAAH), cyclooxygenase (COX)-2, cannabinoid receptor 1 (CB1), transient receptor potential cation channel subfamily V member 1 (TRPV1) and G-protein-coupled receptor 55 (GPR55) genes. AEA induced a concentration-dependent cytotoxicity with an IC50 of 5.8±0.7 µM and such an effect was associated to a caspase-dependent apoptotic pathway. AEA cytotoxicity was potentiated by FAAH inhibition (2-fold increase, p<0.05) and mitigated by COX-2 or lipoxygenase (LOX) inhibition (5- and 3-fold decrease, respectively; p<0.01). Blocking CB1 receptors partially decreased AEA cytotoxicity, whereas selective antagonism on the TRPV1 barely affected the mechanism of AEA action. Finally, methyl-β-cyclodextrin, a membrane cholesterol depletory, completely reversed the cytotoxicity induced by the selective GPR55 agonist, O-1602, and AEA. Overall, these findings demonstrate that AEA induces cytotoxicity against human melanoma cells in the micromolar range of concentrations through a complex mechanism, which involves COX-2 and LOX-derived product synthesis and CB1 activation. Lipid raft modulation, probably linked to GPR55 activation, might also have a role.
Resumo:
Besides the suggested role of a putative endocannabinoid membrane transporter mediating the cellular uptake of the endocannabinoid anandamide (AEA), this process is intrinsically coupled to AEA degradation by the fatty acid amide hydrolase (FAAH). Differential blockage of each mechanism is possible using specific small-molecule inhibitors. Starting from the natural product-derived 2E,4E-dodecadiene scaffold previously shown to interact with the endocannabinoid system (ECS), a series of diverse N-alkylcarbamates were prepared with the aim of generating novel ECS modulators. While being inactive at cannabinoid receptors and monoacylglycerol lipase, these N-alkylcarbamates showed potent to ultrapotent picomolar FAAH inhibition in U937 cells. Overall, a highly significant correlation (Spearman's rho=0.91) was found between the inhibition of FAAH and AEA cellular uptake among 54 compounds. Accordingly, in HMC-1 cells lacking FAAH expression the effect on AEA cellular uptake was dramatically reduced. Unexpectedly, 3-(4,5-dihydrothiazol-2-yl)phenyl carbamates and the 3-(1,2,3-thiadiazol-4-yl)phenyl carbamates WOBE490, WOBE491 and WOBE492 showed a potentiation of cellular AEA uptake inhibition in U937 cells, resulting in unprecedented femtomolar (hyperpotent) IC50 values. Potential methodological issues and the role of cellular accumulation of selected probes were investigated. It is shown that albumin impacts the potency of specific N-alkylcarbamates and, more importantly, that accumulation of FAAH inhibitors can significantly increase their effect on cellular AEA uptake. Taken together, this series of N-alkylcarbamates shows a FAAH-dependent inhibition of cellular AEA uptake, which can be strongly potentiated using specific head group modifications. These findings provide a rational basis for the development of hyperpotent AEA uptake inhibitors mediated by ultrapotent FAAH inhibition.
Resumo:
The effects of tetrahydrocannabinol (THC) and endogenous cannabinoids (endocannabinoids, ECs) are both mediated by activation of the cannabinoid receptors CB1 and CB2. Exogenous activation of these receptors by THC could therefore alter EC levels. We tested this hypothesis in healthy volunteers (n = 25) who received a large intravenous dose of THC (0.10 mg/kg). Effects on the EC system were quantified by serial measurements of plasma ECs after THC administration. Eleven blood samples were drawn during the first 5 h after THC administration and two more samples after 24 and 48 h. THC, its metabolites THC-OH (biologically active) and THC-COOH (non-active), and the ECs anandamide and 2-arachidonoylglycerol (2-AG) were quantified by liquid chromatography-mass spectrometry. EC-plasma levels showed a biphasic response after THC injection reaching maximal values at 30 min. Anandamide increased slightly from 0.58 ± 0.21 ng/ml at baseline to 0.64 ± 0.24 ng/ml (p < 0.05) and 2-AG from 7.60 ± 4.30 ng/ml to 9.50 ± 5.90 ng/ml (p < 0.05). After reaching maximal concentrations, EC plasma levels decreased markedly to a nadir of 300 min after THC administration (to 0.32 ± 0.15 ng/ml for anandamide and to 5.50 ± 3.01 ng/ml for 2-AG, p < 0.05). EC plasma concentrations returned to near baseline levels until 48 h after the experiment. THC (0.76 ± 0.16 ng/ml) and THC-OH (0.36 ± 0.17 ng/ml) were still measurable at 24 h and remained detectible until 48 h after THC administration. Although the underlying mechanism is not clear, high doses of intravenous THC appear to influence endogenous cannabinoid concentrations and presumably EC-signalling.
Resumo:
The development of exceptionally potent inhibitors of fatty acid amide hydrolase (FAAH), the enzyme responsible for the degradation of oleamide (an endogenous sleep-inducing lipid), and anandamide (an endogenous ligand for cannabinoid receptors) is detailed. The inhibitors may serve as useful tools to clarify the role of endogenous oleamide and anandamide and may prove to be useful therapeutic agents for the treatment of sleep disorders or pain. The combination of several features—an optimal C12–C8 chain length, π-unsaturation introduction at the corresponding arachidonoyl Δ8,9/Δ11,12 and oleoyl Δ9,10 location, and an α-keto N4 oxazolopyridine with incorporation of a second weakly basic nitrogen provided FAAH inhibitors with Kis that drop below 200 pM and are 102–103 times more potent than the corresponding trifluoromethyl ketones.
Resumo:
Endogenous ligands of cannabinoid receptors have been discovered recently and include some N-acylethanolamines (NAEs; e.g., N-arachidonoylethanolamine) and some 2-acylglycerols (e.g., sn-2-arachidonoylglycerol). Previously, we found these compounds to be active biologically when administered per os in large quantities to mice. In the present work, piglets were fed diets with and without 20:4n−6 and 22:6n−3 fatty acid precursors of NAEs, in levels similar to those found in porcine milk, during the first 18 days of life, and corresponding brain NAEs were assessed. In piglets fed diets containing 20:4n−6 and 22:6n−3, there were increases in several biologically active NAEs in brain homogenates—20:4n−6 NAE (4-fold), 20:5n−3 NAE (5-fold), and 22:5n−3 and 22:6n−3 NAE (9- to 10-fold). These results support a mechanism we propose for dietary long-chain polyunsaturated fatty acids influences on brain biochemistry with presumed functional sequelae. This paradigm will enable targeted investigations to determine whether and why specific populations such as infants, elderly, or persons suffering from certain clinical conditions may benefit from dietary long-chain polyunsaturated fatty acids.
Resumo:
The amino acid L-glutamate is a neurotransmitter that mediates fast neuronal excitation in a majority of synapses in the central nervous system. Glutamate stimulates both N-methyl-D-aspartate (NMDA) and non-NMDA receptors. While activation of NMDA receptors has been implicated in a variety of neurophysiologic processes, excessive NMDA receptor stimulation (excitotoxicity) is thought to be primarily responsible for neuronal injury in a wide variety of acute neurological disorders including hypoxia-ischemia, seizures, and trauma. Very little is known about endogenous molecules and mechanisms capable of modulating excitotoxic neuronal death. Saturated N-acylethanolamides like palmitoylethanolamide accumulate in ischemic tissues and are synthesized by neurons upon excitatory amino acid receptor activation. Here we report that palmitoylethanolamide, but not the cognate N-acylamide anandamide (the ethanolamide of arachidonic acid), protects cultured mouse cerebellar granule cells against glutamate toxicity in a delayed postagonist paradigm. Palmitoylethanolamide reduced this injury in a concentration-dependent manner and was maximally effective when added 15-min postglutamate. Cannabinoids, which like palmitoylethanolamide are functionally active at the peripheral cannabinoid receptor CB2 on mast cells, also prevented neuron loss in this delayed postglutamate model. Furthermore, the neuroprotective effects of palmitoylethanolamide, as well as that of the active cannabinoids, were efficiently antagonized by the candidate central cannabinoid receptor (CB1) agonist anandamide. Analogous pharmacological behaviors have been observed for palmitoylethanolamide (ALI-Amides) in downmodulating mast cell activation. Cerebellar granule cells expressed mRNA for CB1 and CB2 by in situ hybridization, while two cannabinoid binding sites were detected in cerebellar membranes. The results suggest that (i) non-CB1 cannabinoid receptors control, upon agonist binding, the downstream consequences of an excitotoxic stimulus; (ii) palmitoylethanolamide, unlike anandamide, behaves as an endogenous agonist for CB2-like receptors on granule cells; and (iii) activation of such receptors may serve to downmodulate deleterious cellular processes following pathological events or noxious stimuli in both the nervous and immune systems.
Resumo:
Evidence is presented for a distinctive type of hippocampal synaptic modification [previously described for a molluscan gamma-aminobutyric acid (GABA) synapse after paired pre- and postsynaptic excitation]: transformation of GABA-mediated synaptic inhibition into synaptic excitation. This transformation persists with no further paired stimulation for 60 min or longer and is termed long-term transformation. Long-term transformation is shown to contribute to pairing-induced long-term potentiation but not to long-term potentiation induced by presynaptic stimulation alone. Further support for such mechanistic divergence is provided by pharmacologic effects on long-term transformation as well as these two forms of long-term potentiation by Cl- channel blockers, glutamate and GABA antagonists, as well as the endogenous cannabinoid ligand anandamide.
Resumo:
Mast cells are multifunctional bone marrow-derived cells found in mucosal and connective tissues and in the nervous system, where they play important roles in tissue inflammation and in neuroimmune interactions. Very little is known about endogenous molecules and mechanisms capable of modulating mast cell activation. Palmitoylethanolamide, found in peripheral tissues, has been proposed to behave as a local autacoid capable of downregulating mast cell activation and inflammation. A cognate N-acylamide, anandamide, the ethanolamide of arachidonic acid, occurs in brain and is a candidate endogenous agonist for the central cannabinoid receptor (CB1). As a second cannabinoid receptor (CB2) has been found in peripheral tissues, the possible presence of CB2 receptors on mast cells and their interaction with N-acylamides was investigated. Here we report that mast cells express both the gene and a functional CB2 receptor protein with negative regulatory effects on mast cell activation. Although both palmitoylethanolamide and anandamide bind to the CB2 receptor, only the former downmodulates mast cell activation in vitro. Further, the functional effect of palmitoylethanolamide, as well as that of the active cannabinoids, was efficiently antagonized by anandamide. The results suggest that (i) peripheral cannabinoid CB2 receptors control, upon agonist binding, mast cell activation and therefore inflammation; (ii) palmitoylethanolamide, unlike anandamide, behaves as an endogenous agonist for the CB2 receptor on mast cells; (iii) modulatory activities on mast cells exerted by the naturally occurring molecule strengthen a proposed autacoid local inflammation antagonism (ALIA) mechanism; and (iv) palmitoylethanolamide and its derivatives may provide antiinflammatory therapeutic strategies specifically targeted to mast cells ("ALIAmides").
Resumo:
Analisar a associação recíproca entre fatores de risco cardiometabólico, níveis de adipocitocinas (leptina e adiponectina de alto peso molecular), endocanabinoides (anandamida [AEA] e 2-araquidonoilglicerol [2-AG]), compostos canabimiméticos (N-oleoiletanolamina [OEA] e N-palmitoiletanolamina [PEA]) e polimorfismos em genes codificadores de componentes do sistema endocanabinoide (enzima de degradação de endocanabinoides FAAH [gene FAAH] e receptor endocanabinoide CB1 [gene CNR1]) e do receptor PPAR-α [gene PPARA], em indivíduos com diferentes graus de adiposidade. Duzentos indivíduos, entre 18 e 60 anos, com diferentes graus de índice de massa corporal (IMC) compuseram a amostra, dividida em dois grupos: cem eutróficos (IMC < 25 kg/m2) e 100 obesos (IMC ≥ 30 kg/m2), com 50 homens e 50 mulheres em cada grupo. Os obesos ficaram assim distribuídos: grau 1, com IMC < 35 kg/m2 (n=54), 27 homens e 27 mulheres; grau 2, com IMC < 40 kg/m2 (n=32), 16 homens e 16 mulheres e grau 3, com IMC ≥ 40 kg/m2 (n=14), 7 homens e 7 mulheres. Todos os indivíduos foram recrutados entre funcionários, estudantes e residentes do Hospital Universitário Pedro Ernesto, bem como voluntários do quadro da Polícia Militar do Estado do Rio de Janeiro e selecionados com base em amostra de conveniência. Todos foram avaliados por parâmetros antropométricos, determinação da pressão arterial, análises laboratoriais e genotipagem, para determinar seu perfil metabólico, níveis de endocanabinoides e adipocitocinas e rastreamento dos polimorfismos FAAH 385C>A, CNR1 3813A>G e PPARA 484C>G. Foram excluídos do estudo aqueles com história de comorbidades crônicas, doenças inflamatórias agudas, dependência de drogas de qualquer natureza e em uso de medicação nos dez dias anteriores à entrada no estudo. A atividade inflamatória, avaliada pela proteína C reativa ultrassensível (PCRUS), acompanhou o grau de resistência insulínica. Os níveis de PEA se associaram negativamente com a adiposidade visceral e resistência insulínica, sugerindo um melhor perfil metabólico, enquanto que os níveis de 2-AG se associaram positivamente com a PCRUS, apontando para piora nesse perfil. Os polimorfismos estudados não se associaram com o fenótipo obeso ou insulinorresistente. A presença do alelo 3813G no gene CNR1 mostrou associação independente com níveis reduzidos de adiponectina em obesos, sugerindo pior perfil metabólico nesse grupo. A presença do alelo 484G no gene PPARA, associando-se com níveis mais elevados de IMC e LDL-colesterol nos eutróficos pode indicar maior predisposição desses indivíduos para o desenvolvimento de obesidade e dislipidemia aterosclerótica. O genótipo homozigoto AA na posição 385 do gene FAAH e os níveis de PCRUS foram as principais associações, diretas e independentes, com os níveis de AEA, indicando claramente disfunção da enzima de degradação da AEA e, possivelmente, contribuindo para um perfil cardiometabólico mais vulnerável em portadores dessa variante genética.
Resumo:
全世界有四分之一人口的日常饮食中包含辣椒及其相关食品,辣椒素是辣椒 里使人产生辛辣和呛感觉的主要成分。辣椒素受体最初是在感觉神经元克隆到 的,后来被命名为TRPV1,是因为发现它属于TRP(Transient receptor potential,瞬时受体势)离子通道家族。辣椒素及其受体在疼痛学领域已有广 泛的研究,但它们如何调节脑功能却知之甚少。很多报道显示辣椒素受体在脑内 广泛表达。在啮齿类动物的海马内,辣椒素受体从齿状回到CA3-CA1区均有表达。 在亚细胞层次,辣椒素受体在神经元胞体,树突棘和突触部位均有表达。近年来 辣椒素受体的内源性配体也被发现,包括花生四烯酸乙醇胺(anandamide, AEA)、 氮磷脂-多巴胺(N-arachidonoyl-dopamine, NADA)、 精胺等。辣椒素在很多脑 区(包括海马),可通过其受体调节神经元兴奋性和神经递质释放。 海马双向突触可塑性,长时程增强(LTP)和抑制现象(LTD)被认为是学习与记 忆的细胞机制。而LTP/LTD的诱导阈值是由 NMDA受体的激活程度及其引起的突 触后胞内钙水平决定的。因此调节NMDA受体和胞内钙信号被认为是调节LTP/LTD 诱导阈值最直接有效的方式。考虑到辣椒素受体的突触分布及其对钙离子的高通 透性,我们认为辣椒素受体的激活可能参与调节LTP/LTD的诱导阈值 本研究采用离体脑片场电位记录方式,发现辣椒素易化LTP的诱导而损伤了 LTD的诱导,并且降低了LTP/LTD的诱导阈值。在给予辣椒素受体的拮抗剂以后, 或者是在TRPV1基因敲除小鼠的脑片上,辣椒素对LTP/LTD的诱导均没有影响。 我们发现的辣椒素对LTP/LTD的影响与行为学应激对LTP/LTD的影响,两者效应恰恰相反,应激是易化LTD的诱导而损伤LTP的诱导。如期所料,辣椒素使应激 损伤的LTP恢复,同时阻断了应激易化的LTD。除了对LTP/LTD有重要的调节作 用以外,我们的结果也显示应激严重损伤了动物对空间记忆的提取。所以我们进 一步研究辣椒素能否对抗应激对动物空间记忆的损伤。我们发现海马内埋置导管 给予辣椒素可以使应激损伤的空间记忆得到恢复,同样,灌胃给予辣椒素也可以 对抗应激对动物空间记忆的损伤,进一步提示日常饮食中的辣椒会对应激相关的 精神障碍有潜在的正面影响。 从动物实验到临床实验都有广泛的证据表明应激对认知功能,焦虑,创伤后 应激综合症等有着深刻的影响。综上所述,我们第一次报道了辣椒素通过激活 TRPV1受体可以对抗应激引起的空间记忆损伤,该效应可能是通过调节LTP/LTD 的诱导阈值来实现的。我们工作的意义在于揭示了辣椒素受体在应激相关的精神 疾病中的潜在作用,为寻找治疗应激相关的精神心理障碍提供了新的靶点,也为 辣椒偏好的饮食习惯与精神卫生之间的关系研究提供了新的思路。
Resumo:
Male infertility is a major cause of problems for many couples in conceiving a child. Recently, lifestyle pastimes such as alcohol, tobacco and marijuana have been shown to have further negative effects on male reproduction. The endocannabinoid system (ECS), mainly through the action of anandamide (AEA) and 2-arachidonoylglycerol (2-AG) at cannabinoid (CB(1), CB(2)) and vanilloid (TRPV1) receptors, plays a crucial role in controlling functionality of sperm, with a clear impact on male reproductive potential. Here, sperm from fertile and infertile men were used to investigate content (through LC-ESI-MS), mRNA (through quantitative RT-PCR), protein (through Western Blotting and ELISA) expression, and functionality (through activity and binding assays) of the main metabolic enzymes of AEA and 2-AG (NAPE-PLD and FAAH, for AEA; DAGL and MAGL for 2-AG), as well as of their binding receptors CB(1), CB(2) and TRPV1. Our findings show a marked reduction of AEA and 2-AG content in infertile seminal plasma, paralleled by increased degradation: biosynthesis ratios of both substances in sperm from infertile versus fertile men. In addition, TRPV1 binding was detected in fertile sperm but was undetectable in infertile sperm, whereas that of CB(1) and CB(2) receptors was not statistically different in the two groups. In conclusion, this study identified unprecedented alterations of the ECS in infertile sperm, that might impact on capacitation and acrosome reaction, and hence fertilization outcomes. These alterations might also point to new biomarkers to determine male reproductive defects, and identify distinct ECS elements as novel targets for therapeutic exploitation of ECS-oriented drugs to treat male fertility problems.
Resumo:
Percutaneous transluminal angioplasty is frequently used in patients with severe arterial narrowing due to atherosclerosis. However, it induces severe arterial injury and an inflammatory response leading to restenosis. Here, we studied a potential activation of the endocannabinoid system and the effect of FA amide hydrolase (FAAH) deficiency, the major enzyme responsible for endocannabinoid anandamide degradation, in arterial injury. We performed carotid balloon injury in atherosclerosis-prone apoE knockout (apoE(-/-)) and apoE(-/-)FAAH(-/-) mice. Anandamide levels were systemically elevated in apoE(-/-) mice after balloon injury. ApoE(-/-)FAAH(-/-) mice had significantly higher baseline anandamide levels and enhanced neointima formation compared with apoE(-/-) controls. The latter effect was inhibited by treatment with CB1 antagonist AM281. Similarly, apoE(-/-) mice treated with AM281 had reduced neointimal areas, reduced lesional vascular smooth-muscle cell (SMC) content, and proliferating cell counts. The lesional macrophage content was unchanged. In vitro proliferation rates were significantly reduced in CB1(-/-) SMCs or when treating apoE(-/-) or apoE(-/-)FAAH(-/-) SMCs with AM281. Macrophage in vitro adhesion and migration were marginally affected by CB1 deficiency. Reendothelialization was not inhibited by treatment with AM281. In conclusion, endogenous CB1 activation contributes to vascular SMC proliferation and neointima formation in response to arterial injury.