22 resultados para Analyticity
Resumo:
We derive a set of differential inequalities for positive definite functions based on previous results derived for positive definite kernels by purely algebraic methods. Our main results show that the global behavior of a smooth positive definite function is, to a large extent, determined solely by the sequence of even-order derivatives at the origin: if a single one of these vanishes then the function is constant; if they are all non-zero and satisfy a natural growth condition, the function is real-analytic and consequently extends holomorphically to a maximal horizontal strip of the complex plane.
Resumo:
Motivated by return maps near saddles for three-dimensional flows and also by return maps in the torus associated to Cherry flows, we study gap maps with derivative positive and smaller than one outside the discontinuity point. We prove that the lamination of infinitely renormalizable maps (or else maps with irrational rotation numbers) has analytic leaves in a natural subset of a Banach space of analytic maps of this kind. With maps having Hölder continuous derivative and derivative bounded away from zero, we also prove Hölder continuity of holonomies of the lamination and also of conjugacies between maps having the same combinatorics. © 2011 Springer Basel AG.
Local attractors, degeneracy and analyticity: Symmetry effects on the locally coupled Kuramoto model
Resumo:
In this work we study the local coupled Kuramoto model with periodic boundary conditions. Our main objective is to show how analytical solutions may be obtained from symmetry assumptions, and while we proceed on our endeavor we show apart from the existence of local attractors, some unexpected features resulting from the symmetry properties, such as intermittent and chaotic period phase slips, degeneracy of stable solutions and double bifurcation composition. As a result of our analysis, we show that stable fixed points in the synchronized region may be obtained with just a small amount of the existent solutions, and for a class of natural frequencies configuration we show analytical expressions for the critical synchronization coupling as a function of the number of oscillators, both exact and asymptotic. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
This paper investigates dynamic completeness of financial markets in which the underlying risk process is a multi-dimensional Brownian motion and the risky securities dividends geometric Brownian motions. A sufficient condition, that the instantaneous dispersion matrix of the relative dividends is non-degenerate, was established recently in the literature for single-commodity, pure-exchange economies with many heterogenous agents, under the assumption that the intermediate flows of all dividends, utilities, and endowments are analytic functions. For the current setting, a different mathematical argument in which analyticity is not needed shows that a slightly weaker condition suffices for general pricing kernels. That is, dynamic completeness obtains irrespectively of preferences, endowments, and other structural elements (such as whether or not the budget constraints include only pure exchange, whether or not the time horizon is finite with lump-sum dividends available on the terminal date, etc.)
Resumo:
A sequence of “inner equations” attached to certain perturbations of the McMillan map was considered in [MSS09], their solutions were used in that article to measure an exponentially small separatrix splitting. We prove here all the results relative to these equations which are necessary to complete the proof of the main result of [MSS09]. The present work relies on ideas from resurgence theory: we describe the formal solutions, study the analyticity of their Borel transforms and use ´Ecalle’s alien derivations to measure the discrepancy between different Borel-Laplace sums.
Resumo:
J/psi photoproduction is studied in the framework of the analytic S-matrix theory. The differential and integrated elastic cross sections for J/psi photoproduction are calculated from a dual amplitude with Mandelstam analyticity. It is argued that, at low energies, the background, which is the low-energy equivalent of the high-energy diffraction, replaces the Pomeron exchange. The onset of the high-energy Pomeron dominance is estimated from the fits to the data.
Resumo:
Exclusive J/Psi electroproduction is studied in the framework of the analytic S-matrix theory. The differential and integrated elastic cross sections are calculated using the modified dual amplitude with Mandelstam analyticity model. The model is applied to the description of the available experimental data and proves to be valid in a wide region of the kinematical variables s, t, and Q(2). Our amplitude can be used also as a universal background parametrization for the extraction of tiny resonance signals.
Resumo:
We show how the familiar phenomenological way of combining the Q2 (photon virtuality) and t (squared momentum transfer) dependences of the scattering amplitude in Deeply Virtual Compton Scattering (DVCS) [1, 2] and Vector Meson Production (VMP) [2] processes can be understood in an off-mass-shell generalization of dual amplitudes with Mandelstam analyticity [3]. By comparing different approaches, we managed also to constrain the numerical values of the free parameters.
Resumo:
We study the heat, linear Schrodinger and linear KdV equations in the domain l(t) < x < ∞, 0 < t < T, with prescribed initial and boundary conditions and with l(t) a given differentiable function. For the first two equations, we show that the unknown Neumann or Dirichlet boundary value can be computed as the solution of a linear Volterra integral equation with an explicit weakly singular kernel. This integral equation can be derived from the formal Fourier integral representation of the solution. For the linear KdV equation we show that the two unknown boundary values can be computed as the solution of a system of linear Volterra integral equations with explicit weakly singular kernels. The derivation in this case makes crucial use of analyticity and certain invariance properties in the complex spectral plane. The above Volterra equations are shown to admit a unique solution.
Resumo:
We study initial-boundary value problems for linear evolution equations of arbitrary spatial order, subject to arbitrary linear boundary conditions and posed on a rectangular 1-space, 1-time domain. We give a new characterisation of the boundary conditions that specify well-posed problems using Fokas' transform method. We also give a sufficient condition guaranteeing that the solution can be represented using a series. The relevant condition, the analyticity at infinity of certain meromorphic functions within particular sectors, is significantly more concrete and easier to test than the previous criterion, based on the existence of admissible functions.
Resumo:
We give a characterisation of the spectral properties of linear differential operators with constant coefficients, acting on functions defined on a bounded interval, and determined by general linear boundary conditions. The boundary conditions may be such that the resulting operator is not selfadjoint. We associate the spectral properties of such an operator $S$ with the properties of the solution of a corresponding boundary value problem for the partial differential equation $\partial_t q \pm iSq=0$. Namely, we are able to establish an explicit correspondence between the properties of the family of eigenfunctions of the operator, and in particular whether this family is a basis, and the existence and properties of the unique solution of the associated boundary value problem. When such a unique solution exists, we consider its representation as a complex contour integral that is obtained using a transform method recently proposed by Fokas and one of the authors. The analyticity properties of the integrand in this representation are crucial for studying the spectral theory of the associated operator.
Resumo:
In this paper we propose methods for computing Fresnel integrals based on truncated trapezium rule approximations to integrals on the real line, these trapezium rules modified to take into account poles of the integrand near the real axis. Our starting point is a method for computation of the error function of complex argument due to Matta and Reichel (J Math Phys 34:298–307, 1956) and Hunter and Regan (Math Comp 26:539–541, 1972). We construct approximations which we prove are exponentially convergent as a function of N , the number of quadrature points, obtaining explicit error bounds which show that accuracies of 10−15 uniformly on the real line are achieved with N=12 , this confirmed by computations. The approximations we obtain are attractive, additionally, in that they maintain small relative errors for small and large argument, are analytic on the real axis (echoing the analyticity of the Fresnel integrals), and are straightforward to implement.
Resumo:
O artigo comenta a crítica comportamental quineana da semântica e da epistemologia. Quine pretende, com esta crítica, ter produzido contribuições significativas para a clarificação de umas tantas noções, entre elas a de observação, ou de sentença observacional, tema este que é apresentado detalhadamente. É examinado, também, o papel exato da chamada tese Duhem-Quine na rejeição, por Quine, da doutrina das proposições.