989 resultados para Anaerobic treatment


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Effluents from the juice and fruit processing industries have high organic matter content. Discharge of these effluents without appropriate treatment would therefore have a negative impact on the environment. High organic contents and low contamination levels make such effluents suitable for biological treatment, especially anaerobic digestion. In the latter process, significant amounts of digester gas can be produced, turning a waste stream into a source of renewable energy that can be used for electricity and heat production, leading to financial benefits.This paper investigates the feasibility of anaerobic digestion and the gas generation potential of five different effluents from the carrot-juice, orange-juice and sultana processing industries. Benefits are assessed in terms of digester gas production and organic matter reduction. The results show that the specific gas production ranges between 665 and 860 m3 per tonne of effluent treated (as organic dry matter). Furthermore, nearly 100% of the organic matter is converted into gas in the case of the carrot- and orange-juice processing residues, while a 84.5% reduction of the organic matter was found to be achievable in the case of the sultana wastes. While these results are promising, further testing will be required to validate them in a larger scale.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, the efficiency of two-stage upflow anaerobic sludge blanket (UASB) reactors was evaluated in bench scale, for treating a liquid effluent from coffee pulping. Hydraulic detention times (HDT) were 4.0; 5.2 and 6.2 days, resulting in organic loading rates (OLR) of 5.8; 3.6 and 3.0g total COD per (L-d) in the first reactor (Rl) and HDT of 2.0; 2.6 and 3.1 days with OLR of 5.8; 0.5 and 0.4 g total COD per (L-d) in the second reactor (R2). The medium values of total COD affluent varied from 15.440 to 23.040 mg O 2/L, and in the effluent to the reactors 1 and 2 were from l.lOO to 11.500 mg 0 2/L and 420 to 9.000 mg O 2/L, respectively. The medium values of removal efficiencies of total COD and TSS varied from 66 to 98% and 93 to 97%, respectively, in the system of treatment with the UASB reactors, in two stages. The content of methane in the biogas varied from 69 to 89% in the Rl and from 52 to 73% in the R2. The maximum volumetric methane production of 0.483 m 3 CH 4per (m 3 reactor d) was obtained with OLR of 3.6 g total COD per (L reactor d) and HDT of 6.2 days in the Rl. The volatile fatty acids concentration was kept below 100mg/L with HDT of 5.2 and 6.2 days in the Rl and HDT of 2.6 and 3.1 days in the R2.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Gray water treatment and reuse is an immediate option to counter the upcoming water shortages in various parts of world, especially urban areas. Anaerobic treatment of gray water in houses is an alternative low cost, low energy and low sludge generating option that can meet this challenge. Typical problems of fluctuating VFA, low pH and sludge washout at low loading rates with gray water feedstock was overcome in two chambered anaerobic biofilm reactors using natural fibers as the biofilm support. The long term performance of using natural fiber based biofilms at moderate and low organic loading rates (OLR) have been examined. Biofilms raised on natural fibers (coir, ridge-gourd) were similar to that of synthetic media (PVC, polyethylene) at lower OLR when operated in pulse fed mode without effluent recirculation and achieved 80-90% COD removal at HRT of 2 d showing a small variability during start-up. Confocal microscopy of the biofilms on natural fibers indicated thinner biofilms, dense cell architecture and low extra cellular polymeric substances (EPS) compared to synthetic supports and this is believed to be key factor in high performance at low OLR and low strength gray water. Natural fibers are thus shown to be an effective biofilm support that withstand fluctuating characteristic of domestic gray water. (C) 2013 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Agitation rate is an important parameter in the operation of Anaerobic Sequencing Biofilm Batch Reactors (ASBBRs), and a proper agitation rate guarantees good mixing, improves mass transfer, and enhances the solubility of the particulate organic matter. Dairy effluents have a high amount of particulate organic matter, and their anaerobic digestion presents inhibitory intermediates (e. g., long-chain fatty acids). The importance of studying agitation in such batch systems is clear. The present study aimed to evaluate how agitation frequency influences the anaerobic treatment of dairy effluents. The ASBBR was fed with wastewater from milk pasteurisation process and cheese manufacture with no whey segregation. The organic matter concentration, measured as chemical oxygen demand (COD), was maintained at approximately 8,000 mg/L. The reactor was operated with four agitation frequencies: 500 rpm, 350 rpm, 200 rpm, and no agitation. In terms of COD removal efficiency, similar results were observed for 500 rpm and 350 rpm (around 90%) and for 200 rpm and no agitation (around 80%). Increasing the system`s agitation thus not only improved the global efficiency of organic matter removal but also influenced volatile acid production and consumption and clearly modified this balance in each experimental condition.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this work was to demonstrate at pilot scale a high level of energy recovery from sewage utilising a primary Anaerobic Migrating Bed Reactor (AMBR) operating at ambient temperature to convert COD to methane. The focus is the reduction in non-renewable CO2 emissions resulting from reduced energy requirements for sewage treatment. A pilot AMBR was operated on screened sewage over the period June 2003 to September 2004. The study was divided into two experimental phases. In Phase 1 the process operated at a feed rate of 10 L/h (HRT 50 h), SRT 63 days, average temperature 28 degrees C and mixing time fraction 0.05. In Phase 2 the operating parameters were 20 L/h, 26 days, 16 degrees C and 0.025. Methane production was 66% of total sewage COD in Phase 1 and 23% in Phase 2. Gas mixing of the reactor provided micro-aeration which suppressed sulphide production. Intermittent gas mixing at a useful power input of 6 W/m(3) provided satisfactory process performance in both phases. Energy consumption for mixing was about 1.5% of the energy conversion to methane in both operating phases. Comparative analysis with previously published data confirmed that methane supersaturation resulted in significant losses of methane in the effluent of anaerobic treatment systems. No cases have been reported where methane was considered to be supersaturated in the effluent. We have shown that methane supersaturation is likely to be significant and that methane losses in the effluent are likely to have been greater than previously predicted. Dissolved methane concentrations were measured at up to 2.2 times the saturation concentration relative to the mixing gas composition. However, this study has also demonstrated that despite methane supersaturation occurring, microaeration can result in significantly lower losses of methane in the effluent (< 11% in this study), and has demonstrated that anaerobic sewage treatment can genuinely provide energy recovery. The goal of demonstrating a high level of energy recovery in an ambient anaerobic bioreactor was achieved. An AMBR operating at ambient temperature can achieve up to 70% conversion of sewage COD to methane, depending on SRT and temperature. (c) 2006 Wiley Periodicals, Inc.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We report, for the first time, extensive biologically-mediated phosphate removal from wastewater during high-rate anaerobic digestion (AD). A hybrid sludge bed/fixed-film (packed pumice stone) reactor was employed for low-temperature (12°C) anaerobic treatment of synthetic sewage wastewater. Successful phosphate removal from the wastewater (up to 78% of influent phosphate) was observed, mediated by biofilms in the reactor. Scanning electron microscopy and energy dispersive X-ray analysis revealed the accumulation of elemental phosphorus (~2%) within the sludge bed and fixed-film biofilms. 4’, 6-diamidino-2-phenylindole (DAPI) staining indicated phosphorus accumulation was biological in nature and mediated through the formation of intracellular inorganic polyphosphate (polyP) granules within these biofilms. DAPI staining further indicated that polyP accumulation was rarely associated with free cells. Efficient and consistent chemical oxygen demand (COD) removal was recorded, throughout the 732-day trial, at applied organic loading rates between 0.4-1.5 kg COD m-3 d-1 and hydraulic retention times of 8-24 hours, while phosphate removal efficiency ranged from 28-78% on average per phase. Analysis of protein hydrolysis kinetics and the methanogenic activity profiles of the biomass revealed the development, at 12˚C, of active hydrolytic and methanogenic populations. Temporal microbial changes were monitored using Illumina Miseq analysis of bacterial and archaeal 16S rRNA gene sequences. The dominant bacterial phyla present in the biomass at the conclusion of the trial were the Proteobacteria and Firmicutes and the dominant archaeal genus was Methanosaeta. Trichococcus and Flavobacterium populations, previously associated with low temperature protein degradation, developed in the reactor biomass. The presence of previously characterised polyphosphate accumulating organisms (PAOs) such as Rhodocyclus, Chromatiales, Actinobacter and Acinetobacter was recorded at low numbers. However, it is unknown as yet if these were responsible for the luxury polyP uptake observed in this system. The possibility of efficient phosphate removal and recovery from wastewater during AD would represent a major advance in the scope for widespread application of anaerobic wastewater treatment technologies.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This study evaluated the ethanol addition as a strategy for start-up and acclimation of a pilot scale (1300 L) anaerobic sequencing batch biofilm reactor (AnSBBR) for the treatment of municipal landfill leachate with seasonal biodegradability variations. The treatment was carried out at ambient temperature (23.8 ± 2.1 °C) in the landfill area. In a first attempt, the leachate collected directly from landfill showed to be predominantly recalcitrant to anaerobic treatment and the acclimation was not possible. In a second attempt, adding ethanol to leachate, the reactor was successfully acclimated. After acclimation, without ethanol addition, the CODTotal influent ranged from 4970 to 13040 mg L-1 and the removal efficiencies ranged from 12.1% to 70.7%. A final test was carried out increasing the ammonia and free-ammonia concentration from 2486 mgN L-1 and 184 mgN L-1 to 4519 mgN L-1 and 634 mgN L-1, respectively, with no expressive inhibition verified. The start-up strategy was found to be feasible, providing the acclimation of the biomass in the AnSBBR, and maintaining the biomass active even when the leachate was recalcitrant. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The influence of bovine rumen fluid inoculum during anaerobic treatment of the organic fraction of municipal solid waste (MSW) was studied in this work. The parameters adopted for evaluation were the biostabilization constant of total volatile solids (TVs) and the biostabilization time of the chemical oxygen demand (COD) applied to the reactors. The work was realized in four anaerobic batch reactors of 20 1 capacity each, during a period of 365 days. The proportions between MSW/inoculum loaded in the reactors were Reactor A (100%/0%), Reactor B (95%/5%), Reactor C (90%/10%) and Reactor D (85%/15%). The necessary time for biostabilization of half of the applied COD was 459, 347, 302 and 234 days and the average of methane concentration in the biogas produced was 3.6%, 13.0%, 25.0% and 42.6% for Reactors A, B, C and D, respectively. The data obtained affirm that the inoculum used substantially improved the performance of the process. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This study investigated the application of an advanced oxidation process combining hydrogen peroxide with ultraviolet radiation (H2O2/UV) to remove recalcitrant compounds from Kraft bleaching effluent. Anaerobic pre-treatment was performed to remove easily degraded organics using a horizontal-flow anaerobic immobilized biomass (HAIB) reactor. Bleaching plant effluent was treated in the HAIB reactor processed over 19 h of hydraulic retention time (HRT), reaching the expected removal efficiencies for COD (61 +/- 3%), TOC (69 +/- 9%), BOD5 (90 +/- 5%) and AOX (55 +/- 14%). However, the anaerobic treatment did not achieve acceptable removal of UV254 compounds. Furthermore, there was an increase of lignin, measured as total phenols. The H2O2/UV post-treatment provided a wide range of removal efficiencies depending on the dosage of hydrogen peroxide and UV irradiation: COD ranged from 0 to 11%, UV254 from 16 to 35%, lignin from 0 to 29% and AOX from 23 to 54%. All peroxide dosages applied in this work promoted an increase in the BOD5/COD ratio of the wastewater. The experiments demonstrate the technical feasibility of using H2O2/UV for post-treatment of bleaching effluents submitted to anaerobic pre-treatment.