49 resultados para Anévrisme de l’aorte abdominale
Resumo:
La réparation endovasculaire (EVAR) est une technique minimalement invasive permettant de traiter l’anévrisme de l’aorte abdominale (AAA) par l’entremise d’un stent- graft (SG). L’utilisation d’EVAR est actuellement limitée par de fréquentes complications liées à une guérison inadéquate autour de l’implant. Ce manque de guérison est principalement dû au type de recouvrement polymérique des SG, au milieu pro-apoptotique des AAA et à l’accès réduit aux nutriments et à l’oxygène après EVAR. L’objectif de cette thèse consistait à concevoir un revêtement bioactif permettant d’inhiber l’apoptose et stimuler la croissance des cellules musculaires lisses vasculaires (CMLV), pour ainsi favoriser la guérison des tissus vasculaires autour des SG. La chondroïtine-4-sulfate (CS) a d’abord été choisie, car elle a été identifiée comme un médiateur important de la réparation vasculaire. Il a été démontré que la CS en solution influence directement la résistance à l’apoptose des CMLV, en plus de favoriser la différenciation myofibroblastique chez les fibroblastes. Dans le cadre de ce projet, un premier revêtement à base de CS et de collagène a été créé. Bien que le revêtement permettait d’induire une résistance à l’apoptose chez les CMLV, il se désintégrait trop rapidement dans des conditions aqueuses. Une nouvelle méthodologie a donc été adaptée afin de greffer la CS directement sur des surfaces aminées, à l’aide d’un système utilisant un carbodiimide. Dans le but d’accroître la croissance des CMLV à la surface des revêtements, le facteur de croissance de l’épiderme (EGF) a ensuite été sélectionné. En plus de ses propriétés mitogéniques et chimiotactiques, l’EGF stimule la production d’éléments de la matrice extracellulaire, comme le collagène et la fibronectine. De plus, l’activation du récepteur de l’EGF inhibe également l’apoptose des CMLV. L’EGF a donc été greffé sur la CS. Le revêtement de CS+EGF a démontré une bonne uniformité et bioactivité sur des surfaces de verre aminé. iii iv Dans une 3ème étape, afin de permettre de transposer ce revêtement bioactif sur des implants, plusieurs méthodes permettant de créer des groupements d’amines primaires sur les biomatériaux polymériques comme le PET ou le ePTFE ont été étudiées. La polymérisation par plasma a été choisie pour créer le revêtement CS+EGF à la surface de PET. Une fois de plus, celui-ci a permis d’inhiber l’apoptose des CMLV, dans des conditions pro-apoptotiques, et de favoriser la croissance des cellules. Le revêtement de CS et d’EGF, déposé sur des surfaces aminées, possède des caractéristiques biologiques intéressantes et semble donc prometteur pour favoriser une meilleure guérison autour des SG.
Resumo:
Les maladies cardiovasculaires sont la première cause de mortalité dans le monde et les anévrismes de l’aorte abdominale (AAAs) font partie de ce lot déplorable. Un anévrisme est la dilatation d’une artère pouvant conduire à la mort. Une rupture d’AAA s’avère fatale près de 80% du temps. Un moyen de traiter les AAAs est l’insertion d’une endoprothèse (SG) dans l’aorte, communément appelée la réparation endovasculaire (EVAR), afin de réduire la pression exercée par le flux sanguin sur la paroi. L’efficacité de ce traitement est compromise par la survenue d’endofuites (flux sanguins entre la prothèse et le sac anévrismal) pouvant conduire à la rupture de l’anévrisme. Ces flux sanguins peuvent survenir à n’importe quel moment après le traitement EVAR. Une surveillance par tomodensitométrie (CT-scan) annuelle est donc requise, augmentant ainsi le coût du suivi post-EVAR et exposant le patient à la radiation ionisante et aux complications des contrastes iodés. L’endotension est le concept de dilatation de l’anévrisme sans la présence d’une endofuite apparente au CT-scan. Après le traitement EVAR, le sang dans le sac anévrismal coagule pour former un thrombus frais, qui deviendra progressivement un thrombus plus fibreux et plus organisé, donnant lieu à un rétrécissement de l’anévrisme. Il y a très peu de données dans la littérature pour étudier ce processus temporel et la relation entre le thrombus frais et l’endotension. L’étalon d’or du suivi post-EVAR, le CT-scan, ne peut pas détecter la présence de thrombus frais. Il y a donc un besoin d’investir dans une technique sécuritaire et moins coûteuse pour le suivi d’AAAs après EVAR. Une méthode récente, l’élastographie dynamique, mesure l’élasticité des tissus en temps réel. Le principe de cette technique repose sur la génération d’ondes de cisaillement et l’étude de leur propagation afin de remonter aux propriétés mécaniques du milieu étudié. Cette thèse vise l’application de l’élastographie dynamique pour la détection des endofuites ainsi que de la caractérisation mécanique des tissus du sac anévrismal après le traitement EVAR. Ce projet dévoile le potentiel de l’élastographie afin de réduire les dangers de la radiation, de l’utilisation d’agent de contraste ainsi que des coûts du post-EVAR des AAAs. L’élastographie dynamique utilisant le « Shear Wave Imaging » (SWI) est prometteuse. Cette modalité pourrait complémenter l’échographie-Doppler (DUS) déjà utilisée pour le suivi d’examen post-EVAR. Le SWI a le potentiel de fournir des informations sur l’organisation fibreuse du thrombus ainsi que sur la détection d’endofuites. Tout d’abord, le premier objectif de cette thèse consistait à tester le SWI sur des AAAs dans des modèles canins pour la détection d’endofuites et la caractérisation du thrombus. Des SGs furent implantées dans un groupe de 18 chiens avec un anévrisme créé au moyen de la veine jugulaire. 4 anévrismes avaient une endofuite de type I, 13 avaient une endofuite de type II et un anévrisme n’avait pas d’endofuite. Des examens échographiques, DUS et SWI ont été réalisés à l’implantation, puis 1 semaine, 1 mois, 3 mois et 6 mois après le traitement EVAR. Une angiographie, un CT-scan et des coupes macroscopiques ont été produits au sacrifice. Les régions d’endofuites, de thrombus frais et de thrombus organisé furent identifiées et segmentées. Les valeurs de rigidité données par le SWI des différentes régions furent comparées. Celles-ci furent différentes de façon significative (P < 0.001). Également, le SWI a pu détecter la présence d’endofuites où le CT-scan (1) et le DUS (3) ont échoué. Dans la continuité de ces travaux, le deuxième objectif de ce projet fut de caractériser l’évolution du thrombus dans le temps, de même que l’évolution des endofuites après embolisation dans des modèles canins. Dix-huit anévrismes furent créés dans les artères iliaques de neuf modèles canins, suivis d’une endofuite de type I après EVAR. Deux gels embolisants (Chitosan (Chi) ou Chitosan-Sodium-Tetradecyl-Sulfate (Chi-STS)) furent injectés dans le sac anévrismal pour promouvoir la guérison. Des examens échographiques, DUS et SWI ont été effectués à l’implantation et après 1 semaine, 1 mois, 3 mois et 6 mois. Une angiographie, un CT-scan et un examen histologique ont été réalisés au sacrifice afin d’évaluer la présence, le type et la grosseur de l’endofuite. Les valeurs du module d’élasticité des régions d’intérêts ont été identifiées et segmentées sur les données pathologiques. Les régions d’endofuites et de thrombus frais furent différentes de façon significative comparativement aux autres régions (P < 0.001). Les valeurs d’élasticité du thrombus frais à 1 semaine et à 3 mois indiquent que le SWI peut évaluer la maturation du thrombus, de même que caractériser l’évolution et la dégradation des gels embolisants dans le temps. Le SWI a pu détecter des endofuites où le DUS a échoué (2) et, contrairement au CT-scan, détecter la présence de thrombus frais. Finalement, la dernière étape du projet doctoral consistait à appliquer le SWI dans une phase clinique, avec des patients humains ayant déjà un AAA, pour la détection d’endofuite et la caractérisation de l’élasticité des tissus. 25 patients furent sélectionnés pour participer à l’étude. Une comparaison d’imagerie a été produite entre le SWI, le CT-scan et le DUS. Les valeurs de rigidité données par le SWI des différentes régions (endofuite, thrombus) furent identifiées et segmentées. Celles-ci étaient distinctes de façon significative (P < 0.001). Le SWI a détecté 5 endofuites sur 6 (sensibilité de 83.3%) et a eu 6 faux positifs (spécificité de 76%). Le SWI a pu détecter la présence d’endofuites où le CT-scan (2) ainsi que le DUS (2) ont échoué. Il n’y avait pas de différence statistique notable entre la rigidité du thrombus pour un AAA avec endofuite et un AAA sans endofuite. Aucune corrélation n’a pu être établie de façon significative entre les diamètres des AAAs ainsi que leurs variations et l’élasticité du thrombus. Le SWI a le potentiel de détecter les endofuites et caractériser le thrombus selon leurs propriétés mécaniques. Cette technique pourrait être combinée au suivi des AAAs post-EVAR, complémentant ainsi l’imagerie DUS et réduisant le coût et l’exposition à la radiation ionisante et aux agents de contrastes néphrotoxiques.
Resumo:
Les maladies cardiovasculaires sont la première cause de mortalité dans le monde et les anévrismes de l’aorte abdominale (AAAs) font partie de ce lot déplorable. Un anévrisme est la dilatation d’une artère pouvant conduire à la mort. Une rupture d’AAA s’avère fatale près de 80% du temps. Un moyen de traiter les AAAs est l’insertion d’une endoprothèse (SG) dans l’aorte, communément appelée la réparation endovasculaire (EVAR), afin de réduire la pression exercée par le flux sanguin sur la paroi. L’efficacité de ce traitement est compromise par la survenue d’endofuites (flux sanguins entre la prothèse et le sac anévrismal) pouvant conduire à la rupture de l’anévrisme. Ces flux sanguins peuvent survenir à n’importe quel moment après le traitement EVAR. Une surveillance par tomodensitométrie (CT-scan) annuelle est donc requise, augmentant ainsi le coût du suivi post-EVAR et exposant le patient à la radiation ionisante et aux complications des contrastes iodés. L’endotension est le concept de dilatation de l’anévrisme sans la présence d’une endofuite apparente au CT-scan. Après le traitement EVAR, le sang dans le sac anévrismal coagule pour former un thrombus frais, qui deviendra progressivement un thrombus plus fibreux et plus organisé, donnant lieu à un rétrécissement de l’anévrisme. Il y a très peu de données dans la littérature pour étudier ce processus temporel et la relation entre le thrombus frais et l’endotension. L’étalon d’or du suivi post-EVAR, le CT-scan, ne peut pas détecter la présence de thrombus frais. Il y a donc un besoin d’investir dans une technique sécuritaire et moins coûteuse pour le suivi d’AAAs après EVAR. Une méthode récente, l’élastographie dynamique, mesure l’élasticité des tissus en temps réel. Le principe de cette technique repose sur la génération d’ondes de cisaillement et l’étude de leur propagation afin de remonter aux propriétés mécaniques du milieu étudié. Cette thèse vise l’application de l’élastographie dynamique pour la détection des endofuites ainsi que de la caractérisation mécanique des tissus du sac anévrismal après le traitement EVAR. Ce projet dévoile le potentiel de l’élastographie afin de réduire les dangers de la radiation, de l’utilisation d’agent de contraste ainsi que des coûts du post-EVAR des AAAs. L’élastographie dynamique utilisant le « Shear Wave Imaging » (SWI) est prometteuse. Cette modalité pourrait complémenter l’échographie-Doppler (DUS) déjà utilisée pour le suivi d’examen post-EVAR. Le SWI a le potentiel de fournir des informations sur l’organisation fibreuse du thrombus ainsi que sur la détection d’endofuites. Tout d’abord, le premier objectif de cette thèse consistait à tester le SWI sur des AAAs dans des modèles canins pour la détection d’endofuites et la caractérisation du thrombus. Des SGs furent implantées dans un groupe de 18 chiens avec un anévrisme créé au moyen de la veine jugulaire. 4 anévrismes avaient une endofuite de type I, 13 avaient une endofuite de type II et un anévrisme n’avait pas d’endofuite. Des examens échographiques, DUS et SWI ont été réalisés à l’implantation, puis 1 semaine, 1 mois, 3 mois et 6 mois après le traitement EVAR. Une angiographie, un CT-scan et des coupes macroscopiques ont été produits au sacrifice. Les régions d’endofuites, de thrombus frais et de thrombus organisé furent identifiées et segmentées. Les valeurs de rigidité données par le SWI des différentes régions furent comparées. Celles-ci furent différentes de façon significative (P < 0.001). Également, le SWI a pu détecter la présence d’endofuites où le CT-scan (1) et le DUS (3) ont échoué. Dans la continuité de ces travaux, le deuxième objectif de ce projet fut de caractériser l’évolution du thrombus dans le temps, de même que l’évolution des endofuites après embolisation dans des modèles canins. Dix-huit anévrismes furent créés dans les artères iliaques de neuf modèles canins, suivis d’une endofuite de type I après EVAR. Deux gels embolisants (Chitosan (Chi) ou Chitosan-Sodium-Tetradecyl-Sulfate (Chi-STS)) furent injectés dans le sac anévrismal pour promouvoir la guérison. Des examens échographiques, DUS et SWI ont été effectués à l’implantation et après 1 semaine, 1 mois, 3 mois et 6 mois. Une angiographie, un CT-scan et un examen histologique ont été réalisés au sacrifice afin d’évaluer la présence, le type et la grosseur de l’endofuite. Les valeurs du module d’élasticité des régions d’intérêts ont été identifiées et segmentées sur les données pathologiques. Les régions d’endofuites et de thrombus frais furent différentes de façon significative comparativement aux autres régions (P < 0.001). Les valeurs d’élasticité du thrombus frais à 1 semaine et à 3 mois indiquent que le SWI peut évaluer la maturation du thrombus, de même que caractériser l’évolution et la dégradation des gels embolisants dans le temps. Le SWI a pu détecter des endofuites où le DUS a échoué (2) et, contrairement au CT-scan, détecter la présence de thrombus frais. Finalement, la dernière étape du projet doctoral consistait à appliquer le SWI dans une phase clinique, avec des patients humains ayant déjà un AAA, pour la détection d’endofuite et la caractérisation de l’élasticité des tissus. 25 patients furent sélectionnés pour participer à l’étude. Une comparaison d’imagerie a été produite entre le SWI, le CT-scan et le DUS. Les valeurs de rigidité données par le SWI des différentes régions (endofuite, thrombus) furent identifiées et segmentées. Celles-ci étaient distinctes de façon significative (P < 0.001). Le SWI a détecté 5 endofuites sur 6 (sensibilité de 83.3%) et a eu 6 faux positifs (spécificité de 76%). Le SWI a pu détecter la présence d’endofuites où le CT-scan (2) ainsi que le DUS (2) ont échoué. Il n’y avait pas de différence statistique notable entre la rigidité du thrombus pour un AAA avec endofuite et un AAA sans endofuite. Aucune corrélation n’a pu être établie de façon significative entre les diamètres des AAAs ainsi que leurs variations et l’élasticité du thrombus. Le SWI a le potentiel de détecter les endofuites et caractériser le thrombus selon leurs propriétés mécaniques. Cette technique pourrait être combinée au suivi des AAAs post-EVAR, complémentant ainsi l’imagerie DUS et réduisant le coût et l’exposition à la radiation ionisante et aux agents de contrastes néphrotoxiques.
Resumo:
Le traitement chirurgical des anévrismes de l'aorte abdominale est de plus en plus remplacé par la réparation endovasculaire de l’anévrisme (« endovascular aneurysm repair », EVAR) en utilisant des endoprothèses (« stent-grafts », SGs). Cependant, l'efficacité de cette approche moins invasive est compromise par l'incidence de l'écoulement persistant dans l'anévrisme, appelé endofuites menant à une rupture d'anévrisme si elle n'est pas détectée. Par conséquent, une surveillance de longue durée par tomodensitométrie sur une base annuelle est nécessaire ce qui augmente le coût de la procédure EVAR, exposant le patient à un rayonnement ionisants et un agent de contraste néphrotoxique. Le mécanisme de rupture d'anévrisme secondaire à l'endofuite est lié à une pression du sac de l'anévrisme proche de la pression systémique. Il existe une relation entre la contraction ou l'expansion du sac et la pressurisation du sac. La pressurisation résiduelle de l'anévrisme aortique abdominale va induire une pulsation et une circulation sanguine à l'intérieur du sac empêchant ainsi la thrombose du sac et la guérison de l'anévrisme. L'élastographie vasculaire non-invasive (« non-invasive vascular elastography », NIVE) utilisant le « Lagrangian Speckle Model Estimator » (LSME) peut devenir une technique d'imagerie complémentaire pour le suivi des anévrismes après réparation endovasculaire. NIVE a la capacité de fournir des informations importantes sur l'organisation d'un thrombus dans le sac de l'anévrisme et sur la détection des endofuites. La caractérisation de l'organisation d'un thrombus n'a pas été possible dans une étude NIVE précédente. Une limitation de cette étude était l'absence d'examen tomodensitométrique comme étalon-or pour le diagnostic d'endofuites. Nous avons cherché à appliquer et optimiser la technique NIVE pour le suivi des anévrismes de l'aorte abdominale (AAA) après EVAR avec endoprothèse dans un modèle canin dans le but de détecter et caractériser les endofuites et l'organisation du thrombus. Des SGs ont été implantés dans un groupe de 18 chiens avec un anévrisme créé dans l'aorte abdominale. Des endofuites de type I ont été créés dans 4 anévrismes, de type II dans 13 anévrismes tandis qu’un anévrisme n’avait aucune endofuite. L'échographie Doppler (« Doppler ultrasound », DUS) et les examens NIVE ont été réalisés avant puis à 1 semaine, 1 mois, 3 mois et 6 mois après l’EVAR. Une angiographie, une tomodensitométrie et des coupes macroscopiques ont été réalisées au moment du sacrifice. Les valeurs de contrainte ont été calculées en utilisant l`algorithme LSME. Les régions d'endofuite, de thrombus frais (non organisé) et de thrombus solide (organisé) ont été identifiées et segmentées en comparant les résultats de la tomodensitométrie et de l’étude macroscopique. Les valeurs de contrainte dans les zones avec endofuite, thrombus frais et organisé ont été comparées. Les valeurs de contrainte étaient significativement différentes entre les zones d'endofuites, les zones de thrombus frais ou organisé et entre les zones de thrombus frais et organisé. Toutes les endofuites ont été clairement caractérisées par les examens d'élastographie. Aucune corrélation n'a été trouvée entre les valeurs de contrainte et le type d'endofuite, la pression de sac, la taille des endofuites et la taille de l'anévrisme.
Resumo:
Ce travail de thèse porte sur la simulation du déploiement des prothèses vasculaires de type stent-graft (SG) lors de la réparation endovasculaire (EVAR) des anévrismes de l’aorte abdominale (AAA). Cette étude se présente en trois parties: (i) tests mécaniques en flexion et compression de SG couramment utilisés (corps et jambage de marque Cook) ainsi que la simulation numérique desdits tests, (ii) développement d’un modèle numérique d’anévrisme, (iii) stratégie de simulation du déploiement des SG. La méthode numérique employée est celle des éléments finis. Dans un premier temps, une vérification du modèle éléments finis (MEF) des SG est realisée par comparaison des différents cas de charge avec leur pendant expérimental. Ensuite, le MEF vasculaire (AAA) est lui aussi vérifié lors d’une comparaison des niveaux de contraintes maximales principales dans la paroi avec des valeurs de la littérature. Enfin, le déploiement est abordé tout en intégrant les cathéters. Les tests mécaniques menés sur les SG ont été simulés avec une différence maximale de 5,93%, tout en tenant compte de la pré-charge des stents. Le MEF de la structure vasculaire a montré des contraintes maximales principales éloignées de 4,41% par rapport à un modèle similaire précédemment publié. Quant à la simulation du déploiement, un jeu complet de SG a pu être déployé avec un bon contrôle de la position relative et globale, dans un AAA spécifique pré-déformé, sans toutefois inclure de thrombus intra-luminal (TIL). La paroi du AAA a été modélisée avec une loi de comportement isotropique hyperélastique. Étant donné que la différence maximale tolérée en milieu clinique entre réalité et simulation est de 5%, notre approche semble acceptable et pourrait donner suite à de futurs développements. Cela dit, le petit nombre de SG testés justifie pleinement une vaste campagne de tests mécaniques et simulations supplémentaires à des fins de validation.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Introduction: L’approche endovasculaire pour la réparation d’anévrysmes aortiques s’associe à une utilisation importante de produit de contraste, qui peut causer une néphropathie induite par le produit de contraste (NIC) en postopératoire. L’hydratation intraveineuse peut réduire l’incidence de NIC, mais quel produit utiliser reste incertain. Nous avons évalué le bicarbonate de sodium, comparé au NaCl 0,9%, pour réduire l’incidence de NIC. Méthode: Nous avons mené une étude prospective, randomisée et contrôlée à double insu chez 34 patients subissant une chirurgie endovasculaire pour anévrysme aortique. Les patients des deux groupes (17 patients par groupe) ont reçu du bicarbonate de sodium ou du NaCl 0,9% à raison de 3 mL/kg/h pour une heure avant l’intervention puis 1 mL/kg/h jusqu’à 6 h après la fin de la chirurgie. Tous les patients ont reçu du N-acétylcystéine. L’objectif principal était l’incidence de NIC, définie comme une élévation de plus de 25% de la créatinine sérique 48 h suivant l’exposition au produit de contraste. Des biomarqueurs précoces de lésion rénale ont été mesurés. Résultats: Une NIC s’est développée chez 1 patient (5,88%) appartenant au groupe bicarbonate, comparé à aucun patient (0%) dans le groupe NaCl 0,9% (P = 0,31). Les biomarqueurs de lésion rénale étaient significativement augmentés dans les deux groupes après l’exposition au produit de contraste. Conclusions: Nous avons démontré un faible taux d’insuffisance rénale suivant une chirurgie endovasculaire aortique, que l’hydratation soit effectuée avec du bicarbonate ou du NaCl 0,9%, malgré une élévation des biomarqueurs de lésion rénale.
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
Resumo:
La protéine de filament intermédiaire Nestin, marqueur de cellules souches neurales, est exprimée dans les cellules vasculaires. Il a été démontré que les cellules de la crosse aortique dérivent de la crête neurale pendant le développement. Des cellules endothéliales exprimant Nestin sont retrouvées dans les capillaires durant l’embryogénèse ainsi que durant la vascularisation de tumeurs cancéreuses. Cette protéine est impliquée dans les mécanismes de prolifération cellulaire. Récemment des cellules Nestin+ ont été identifiées au niveau des cellules du muscle lisse de l’aorte. La régulation de Nestin dans ces cellules, pendant le développement et en conditions pathologiques, est inconnue. Cette thèse porte sur l’analyse de la protéine Nestin dans le remodelage vasculaire en situation diabétique et d’hypertension au niveau des artères carotide et aortique. Nos travaux examinent l’hypothèse que l’expression vasculaire de Nestine joue un rôle dans l’homéostasie durant le vieillissement physiologique et participe au remodelage suite à des stimuli pathologiques. La protéine Nestin est fortement exprimée dans les aortes de rats néonataux et cette expression diminue rapidement avec le développement. Au niveau de l’aorte l’expression de la protéine Nestin est retrouvée dans une sous-population de cellules du muscle lisse et au niveau des cellules endothéliales. L’expression de la protéine Nestin est corrélée avec sa proximité au cœur, une plus grande expression est observée dans l’arche aortique et une faible expression est détectée dans la partie thoracique. Nous avons déterminé qu’en présence de diabète de type I, il y a une perte de l’expression de la protéine Nestin dans la média de l’aorte et de la carotide. Cette perte d’expression représente un évènement précoce dans la pathologie diabétique et précède la dysfonction endothéliale. La diminution de l’expression de la protéine Nestin est également concomitante avec la perte de la capacité proliférative des cellules du muscle lisse. Dans les rats souffrant de diabète de type 1, une réduction significative de la densité des cellules du muscle lisse exprimant la protéine phosphorylée phosphohistone 3, une protéine impliquée dans un cycle cellulaire actif, est observée. De plus, cette réduction est corrélée avec la perte de l’expression de la protéine Nestin. Nous avons également démontré in vitro qu’un traitement hyperglycémique réduit l’expression de Nestin ainsi que la prolifération des cellules du muscle lisse. Enfin, l’utilisation d’un shARN dirigé contre Nestin nous a permis de déterminer l’implication de cette protéine dans la prolifération des cellules du muscle lisse en condition basale caractérisée par la diminution de l’incorporation de [3H] thymidine. Dans le modèle d’hypertension induite par une constriction aortique abdominale surrénale, l’augmentation de la pression sanguine est associée avec l’augmentation de l’expression de la protéine Nestin dans l’artère carotidienne. Une corrélation positive a été observée entre l’expression de la protéine Nestin dans la carotide et la pression artérielle moyenne à laquelle la paroi de la carotide est soumise. De plus, les facteurs de croissance impliqués dans le remodelage vasculaire secondaire à l’hypertension augmentent l’expression de Nestin dans les cellules du muscle lisse isolées des carotides. Puis, la réduction de l’expression de la protéine Nestin via un shARN atténue l’incorporation de [3H] thymidine, associée à la prolifération cellulaire, stimulée par ces facteurs de croissance alors que l’incorporation de [3H] leucine, associée à la synthèse protéique, demeure inchangée. Ces résultats suggèrent que l’augmentation de l’expression de la protéine Nestin, secondaire à l’hypertension, pourrait représenter une réponse adaptative où il y a une augmentation de la croissance des cellules du muscle lisse afin de permettre à la paroi vasculaire de s’ajuster à l’augmentation de la pression sanguine.
Resumo:
The disposition of the abdominal aorta branching in Mesocricetus auratus is described, establishing variation groups with relation to the celiac, cranial mesenteric, renal, genital and caudal mesenteric arteries. Sixty animals (30 males and 30 females) of different ages and weights, were anesthetized with chloroform, injected with contrasting substance in the abdominal aorta (50 animals with Neoprene latex and 10 with a radioopaque mass), after which they were dissected with the help of a stereoscopic microscope. The animals with radioopaque masses were radiographed in comparison with the other animals. The results are expressed in relative percentage figures and compared with other mammalian arterial dispositions.