956 resultados para Amount of light
The joint influence of gender and amount of smoking on weight gain one year after smoking cessation.
Resumo:
Weight gain is often associated with smoking cessation and may discourage smokers from quitting. This study estimated the weight gained one year after smoking cessation and examined the risk factors associated with weight gain in order to identify socio-demographic groups at higher risk of increased weight after quitting. We analyzed data from 750 adults in two randomized controlled studies that included smokers motivated to quit and found a gradient in weight gain according to the actual duration of abstinence during follow-up. Subjects who were abstinent for at least 40 weeks gained 4.6 kg (SD = 3.8) on average, compared to 1.2 kg (SD = 2.6) for those who were abstinent less than 20 weeks during the 1-year follow-up. Considering the duration of abstinence as an exposure variable, we found an age effect and a significant interaction between sex and the amount of smoking before quitting: younger subjects gained more weight than older subjects; among light smokers, men gained more weight on average than women one year after quitting, while the opposite was observed among heavy smokers. Young women smoking heavily at baseline had the highest risk of weight gain after quitting.
Resumo:
Sweet pepper is one of the ten most consumed vegetables in world. Although it develops better under protected environment, the cultivation in tropical countries is practiced in open field due greenhouse structure higher costs. Unfortunately, such practice has compromised the crop to reach either best yield or fruit quality. Since production and cost are the most important criteria for agricultural production, we aimed to evaluate reflective aluminized polypropylene shading net influence on sweet pepper (Capsicum annuum L.) growth and production as intermediary alternative for low/middle income producers from Brazilian tropical regions. Sweet pepper Magali R hybrid was cultivated in two environments: FC - field conditions (control) and RS - reflective shading net with 40% shading rate. RS caused reductions in incident solar radiation (SR) and photosynthetically active radiation (PAR) on the amount of 46.3% and 48.3%, respectively. There were no significant changes in temperature and relative humidity recorded for the two environments. In addition, RS allowed best use efficiency of photosynthetically active radiation since it promoted higher values of plant height, leaf number and area index than those reached on FC on the amount of 29%, 22% and 80 %, respectively. Similarly, plants grown under RS showed higher yield and marketable fruits and promoted less loses by sunscald.
Resumo:
The metabolic switch From C-3-photosynthesis to crassulacean acid metabolism (CAM),and the antioxidative response of Mesembryanthemum crystallinum L. plants cultured under severe salt stress and high light intensities, and a combination of booth stress conditions, were studied. High light conditions led to a more rapid CAM induction than salinity. The induction time was still shortened when both stress factors were combined. A main pattern observed in CAM plants was a decrease in mitochondrial Mn-superoxide dismutase (SOD) activity during the day. The activities of the chloroplastic Fe-SOD and cytosolic CuZn-SOD were increased due to salt treatment after a lag phase, while catalase activity was decreased. Combination of salt and light stress did not lead to a higher SOD activity as found after application of one stress factor alone, indicating that there is a threshold level of the oxidative stress response. The fact that salt-stressed plants grown under high light conditions showed permanent photoinhibition and lost the ability for nocturnal malate storage after 9 d of treatment indicate serious malfunction of metabolism, leading to accelerated senescence. Comparison of CuZn-SOD activity with CuZn-SOD protein amount, which was determined immunologically, indicates that the activity of the enzyme is at least partially post-translationally regulated.
Resumo:
Glass formation in the pseudo ternary system ZnF2-GdF3-BaF2-InF3 and other complex systems stabilized by NaF, CaF2, AlF3 and YF3 have been investigated. Samples with greater stability have been prepared and their properties measured. Optical absorption and emission spectra of Gd3+ ions doped glasses with 2, 4, 10 and 20% concentrations have been measured. Using the Judd-Ofelt theory and the experimental oscillator strengths, the Judd-Ofelt parameters have been calculated. The emission of Gd3+ ions from 6I and 6P has been detected and the lifetime has been measured.
Resumo:
Weight gain is often associated with smoking cessation and may discourage smokers from quitting. This study estimated the weight gained one year after smoking cessation and examined the risk factors associated with weight gain in order to identify socio-demographic groups at higher risk of increased weight after quitting. We analyzed data from 750 adults in two randomized controlled studies that included smokers motivated to quit and found a gradient in weight gain according to the actual duration of abstinence during follow-up. Subjects who were abstinent for at least 40 weeks gained 4.6 kg (SD = 3.8) on average, compared to 1.2 kg (SD = 2.6) for those who were abstinent less than 20 weeks during the 1-year follow-up. Considering the duration of abstinence as an exposure variable, we found an age effect and a significant interaction between sex and the amount of smoking before quitting: younger subjects gained more weight than older subjects; among light smokers, men gained more weight on average than women one year after quitting, while the opposite was observed among heavy smokers. Young women smoking heavily at baseline had the highest risk of weight gain after quitting.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
Rhodamine B (RB) has been successfully exploited in the synthesis of light harvesting systems, but since RB is prone to form dimers acting as quenchers for the fluorescence, high energy transfer efficiencies can be reached only when using bulky and hydrophobic counterions acting as spacers between RBs. In this PhD thesis, a multiscale theoretical study aimed at providing insights into the structural, photophysical and optical properties of RB and its aggregates is presented. At the macroscopic level (no atomistic details) a phenomenological model describing the fluorescence decay of RB networks in presence of both quenching from dimers and exciton-exciton annihiliation is presented and analysed, showing that the quenching from dimers affects the decay only at long times, a feature that can be exploited in global fitting analysis to determine relevant chemical and photophysical information. At the mesoscopic level (atomistic details but no electronic structure) the RB aggregation in water in presence of different counterions is studied with molecular dynamics (MD) simulations. A new force field has been parametrized for describing the RB flexibility and the RB-RB interaction driving the dimerization. Simulations correctly predict the RB/counterion aggregation only in presence of bulky and hydrophobic counterion and its ability to prevent the dimerization. Finally, at the microscopic level, DFT calculations are performed to demonstrate the spacing action of bulky counterions, but standard TDDFT calculations are showed to fail in correctly describing the excited states of RB and its dimers. Moreover, also standard procedures proposed in literature for obtaining ad hoc functionals are showed to not work properly. A detailed analysis on the effect of the exact exchange shows that its short-range contribution is the crucial quantity for ameliorating results, and a new functional containing a proper amount of such an exchange is proposed and successfully tested.
Resumo:
This in vitro study evaluated the cytotoxicity of an experimental restorative composite resin subjected to different light-curing regimens. METHODS: Forty round-shaped specimens were prepared and randomly assigned to four experimental groups (n=10), as follows: in Group 1, no light-curing; in Groups 2, 3 and 4, the composite resin specimens were light-cured for 20, 40 or 60 s, respectively. In Group 5, filter paper discs soaked in 5 µL PBS were used as negative controls. The resin specimens and paper discs were placed in wells of 24-well plates in which the odontoblast-like cells MDPC-23 (30,000 cells/cm²) were plated and incubated in a humidified incubator with 5% CO2 and 95% air at 37ºC for 72 h. The cytotoxicity was evaluated by the cell metabolism (MTT assay) and cell morphology (SEM). The data were analyzed statistically by Kruskal-Wallis and Mann-Whitney tests (p<0.05). RESULTS: In G1, cell metabolism decreased by 86.2%, indicating a severe cytotoxicity of the non-light-cured composite resin. On the other hand, cell metabolism decreased by only 13.3% and 13.5% in G2 and G3, respectively. No cytotoxic effects were observed in G4 and G5. In G1, only a few round-shaped cells with short processes on their cytoplasmic membrane were observed. In the other experimental groups as well as in control group, a number of spindle-shaped cells with long cytoplasmic processes were found. CONCLUSION: Regardless of the photoactivation time used in the present investigation, the experimental composite resin presented mild to no toxic effects to the odontoblast-like MDPC-23 cells. However, intense cytotoxic effects occurred when no light-curing was performed.
Resumo:
The aim of the present study was to evaluate the influence of different photopolymerization (halogen, halogen soft-start and LED) systems on shear bond strength (SBS) and marginal microleakage of composite resin restorations. Forty Class V cavities (enamel and dentin margins) were prepared for microleakage assessment, and 160 enamel and dentin fragments were prepared for the SBS test, and divided into 4 groups. Kruskal-Wallis and Wilcoxon tests showed statistically significant difference in microleakage between the margins (p < 0.01) with incisal margins presenting the lowest values. Among the groups, it was observed that, only at the cervical margin, halogen soft-start photo polymerization presented statistically significant higher microleakage values. For SBS test, ANOVA showed no statistical difference (p > 0.05) neither between substrates nor among groups. It was concluded that Soft-Start technique with high intensity end-light influenced negatively the cervical marginal sealing, but the light-curing systems did not influence adhesion.
Resumo:
OBJECTIVE: This study evaluated the influence of light sources and immersion media on the color stability of a nanofilled composite resin. MATERIAL AND METHODS: Conventional halogen, high-power-density halogen and high-power-density light-emitting diode (LED) units were used. There were 4 immersion media: coffee, tea, Coke® and artificial saliva. A total of 180 specimens (10 mm x 2 mm) were prepared, immersed in artificial saliva for 24 h at 37±1ºC, and had their initial color measured with a spectrophotometer according to the CIELab system. Then, the specimens were immersed in the 4 media during 60 days. Data from the color change and luminosity were collected and subjected to statistical analysis by the Kruskall-Wallis test (p<0.05). For immersion time, the data were subjected to two-way ANOVA test and Fisher's test (p<0.05). RESULTS: High-power-density LED (ΔE=1.91) promoted similar color stability of the composite resin to that of the tested halogen curing units (Jet Lite 4000 plus - ΔE=2.05; XL 3000 - ΔE=2.28). Coffee (ΔE=8.40; ΔL=-5.21) showed the highest influence on color stability of the studied composite resin. CONCLUSION: There was no significant difference in color stability regardless of the light sources, and coffee was the immersion medium that promoted the highest color changes on the tested composite resin.
Resumo:
The objective of the present study was to evaluate the effects of light and temperature on germination of Cereus pernambucensis seeds, a species of columnar cactus native to Brazil and naturally incident in the restinga. Cereus pernambucensis seeds were incubated under different temperatures, from 5 to 45 °C, with 5 °C intervals, and under alternating temperatures of 15-20 °C, 15-30 °C, 20-25 °C, 20-30 °C, 20-35 °C, 25-30 °C, 25-35 °C, and 30-35 °C, both under continuous white light and dark. The seeds were also incubated in a gradient of phytochrome photoequilibrium at 25 °C. The highest percentage germination in this species was between 25 and 30 °C. The minimum temperature was between 15 and 20 °C and the maximum between 35 and 40 °C. Alternating temperatures did not affect the percentage of seed germination, but it did alter the rate and synchronization indexes. Seeds incubated in the dark did not germinate under any of the conditions tested, indicating that this species when cultivated present light sensitive seeds controlled by phytochrome. The seeds can tolerate a lot of shade conditions, germinating under very low fluence response of phytochrome.
Resumo:
The theory of nonlinear diffraction of intensive light beams propagating through photorefractive media is developed. Diffraction occurs on a reflecting wire embedded in the nonlinear medium at a relatively small angle with respect to the direction of the beam propagation. It is shown that this process is analogous to the generation of waves by a flow of a superfluid past an obstacle. The ""equation of state"" of such a superfluid is determined by the nonlinear properties of the medium. On the basis of this hydrodynamic analogy, the notion of the ""Mach number"" is introduced where the transverse component of the wave vector plays the role of the fluid velocity. It is found that the Mach cone separates two regions of the diffraction pattern: inside the Mach cone oblique dark solitons are generated and outside the Mach cone the region of ""optical ship waves"" (the wave pattern formed by a two-dimensional packet of linear waves) is situated. Analytical theory of the ""optical ship waves"" is developed and two-dimensional dark soliton solutions of the generalized two-dimensional nonlinear Schrodinger equation describing the light beam propagation are found. Stability of dark solitons with respect to their decay into vortices is studied and it is shown that they are stable for large enough values of the Mach number.
Resumo:
We show that scalable multipartite entanglement among light fields may be generated by optical parametric oscillators (OPOs). The tripartite entanglement existent among the three bright beams produced by a single OPO-pump, signal, and idler-is scalable to a system of many OPOs by pumping them in cascade with the same optical field. This latter serves as an entanglement distributor. The special case of two OPOs is studied, as it is shown that the resulting five bright beams share genuine multipartite entanglement. In addition, the structure of entanglement distribution among the fields can be manipulated to some degree by tuning the incident pump power. The scalability to many fields is straightforward, allowing an alternative implementation of a multipartite quantum information network with continuous variables.
Resumo:
By numerically calculating the relevant electromagnetic fields and charge current densities, we show how local charges and currents near subwavelength structures govern light transmission through subwavelength apertures in a real metal film. The illumination of a single aperture generates surface waves; and in the case of slits, generates them with high efficiency and with a phase close to - pi with respect to a reference standing wave established at the metal film front facet. This phase shift is due to the direction of induced charge currents running within the slit walls. The surface waves on the entrance facet interfere with the standing wave. This interference controls the profile of the transmission through slit pairs as a function of their separation. We compare the calculated transmission profile for a two-slit array to simple interference models and measurements [Phys. Rev. B 77(11), 115411 (2008)]. (C) 2011 Optical Society of America
Resumo:
In Bohmian mechanics, a version of quantum mechanics that ascribes world lines to electrons, we can meaningfully ask about an electron's instantaneous speed relative to a given inertial frame. Interestingly, according to the relativistic version of Bohmian mechanics using the Dirac equation, a massive particle's speed is less than or equal to the speed of light, but not necessarily less. That is, there are situations in which the particle actually reaches the speed of light-a very nonclassical behavior. That leads us to the question of whether such situations can be arranged experimentally. We prove a theorem, Theorem 5, implying that for generic initial wave functions the probability that the particle ever reaches the speed of light, even if at only one point in time, is zero. We conclude that the answer to the question is no. Since a trajectory reaches the speed of light whenever the quantum probability current (psi) over bar gamma(mu)psi is a lightlike 4-vector, our analysis concerns the current vector field of a generic wave function and may thus be of interest also independently of Bohmian mechanics. The fact that the current is never spacelike has been used to argue against the possibility of faster-than-light tunneling through a barrier, a somewhat similar question. Theorem 5, as well as a more general version provided by Theorem 6, are also interesting in their own right. They concern a certain property of a function psi : R(4) -> C(4) that is crucial to the question of reaching the speed of light, namely being transverse to a certain submanifold of C(4) along a given compact subset of space-time. While it follows from the known transversality theorem of differential topology that this property is generic among smooth functions psi : R(4) -> C(4), Theorem 5 asserts that it is also generic among smooth solutions of the Dirac equation. (C) 2010 American Institute of Physics. [doi:10.1063/1.3520529]