978 resultados para Amorphous-carbon
Resumo:
The synthesis of polymerlike amorphous carbon(a-C:H) thin-films by microwave excited collisional hydrocarbon plasma process is reported. Stable and highly aromatic a-C:H were obtained containing significant inclusions of poly(p-phenylene vinylene) (PPV). PPV confers universal optoelectronic properties to the synthesized material. That is a-C:H with tailor-made refractive index are capable of becoming absorption-free in visible (red)-near infrared wavelength range. Production of large aromatic hydrocarbon including phenyl clusters and/or particles is attributed to enhanced coagulation of elemental plasma species under collisional plasma conditions. Detailed structural and morphological changes that occur in a-C:H during the plasma synthesis are also described.
Resumo:
Superhydrophobic amorphous carbon/carbon nanotube nanocomposites are fabricated by plasma immersion ion implantation with carbon nanotube forests as a template. The microstructure of the fabricated nanocomposites shows arrays of carbon nanotubes capped with amorphous carbon nanoparticles. Contact angle measurements show that both advancing and receding angles close to 180° can be achieved on the nanocomposites. The fabrication here does not require patterning of carbon nanotubes or deposition of conformal coatings with low surface energy, which are usually involved in conventional approaches for superhydrophobic surfaces. The relationship between the observed superhydrophobicity and the unique microstructure of the nanocomposites is discussed. © 2009 American Institute of Physics.
Resumo:
The nature of amorphous carbon has been explored by molecular mechanics by examining the structures of species such as C84Hx and C150Hx, wherein the percentage of sp(3) carbons is progressively increased in a graphitic network. The nature of diamond-like carbon has been similarly investigated by examining the structures of C84Hx and C102Hx where the percentage of sp(2) carbons is varied in an sp(3) network. The dependence of the average coordination number as well as the sp(3)/sp(2) atom ratio on the atom fraction of hydrogen has been investigated in light of the random covalent network model.
Resumo:
Amorphous carbon-sulfur (a-C:S) composite films were prepared by vapor phase pyrolysis technique. The structural changes in the a-C:S films were investigated by electron microscopy. A powder X-ray diffraction (XRD) study depicts the two-phase nature of a sulfur-incorporated a-C system. The optical bandgap energy shows a decreasing trend with an increase in the sulfur content and preparation temperature. This infers a sulfur incorporation and pyrolysis temperature induced reduction in structural disorder or increase in sp (2) or pi-sites. The presence of sulfur (S 2p) in the a-C:S sample is analyzed by the X-ray photoelectron spectroscopy (XPS). The sp (3)/sp (2) hybridization ratio is determined by using the XPS C 1s peak fitting, and the results confirm an increase in sp (2) hybrids with sulfur addition to a-C. The electrical resistivity variation in the films depends on both the sulfur concentration and the pyrolysis temperature.
Resumo:
The polymer-amorphous carbon composites show a negative magnetoconductance which varies as B-2 at low fields which changes to B-1/2 at sufficiently high fields. The magnetoconductance gives the evidence of electron-electron interaction in composites whose conductivity follows thermal fluctuation induced tunneling and falls in the critical regime. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Implications of nanostructuring and conductive carbon interface on lithium insertion/removal capacity and insertion kinetics innanoparticles of anatase polymorph of titania is discussed here.Sol-gel synthesized nanoparticles of titania (particle size similar to 6 nm) were hydrothermally coated ex situ with a thin layer of amorphous carbon (layer thickness: 2-5 nm) and calcined at a temperature much higher than the sol-gel synthesis temperature. The carbon-titania composite particles (resulting size similar to 10 nm) displayed immensely superior cyclability and rate capability (higher current rates similar to 4 g(-1)) compared to unmodified calcined anatase titania. The conductive carbon interface around titania nanocrystal enhances the electronic conductivity and inhibits crystallite growth during electrochemical insertion/removal thus preventing detrimental kinetic effects observed in case of unmodified anatase titania. The carbon coating of the nanoparticles also stabilized the titania crystallographic structure via reduction in the accessibility of lithium ions to the trapping sites. This resulted in a decrease in the irreversible capacity observed in the case of nanoparticles without any carbon coating.
Resumo:
The influence of concentration and size of sp (2) cluster on the transport properties and electron field emissions of amorphous carbon films have been investigated. The observed insulating to metallic behaviour from reduced activation energy derived from transport measurement and threshold field for electron emission of a-C films can be explained in terms of improvements in the connectivity between sp (2) clusters. The connectivity is resulted by the cluster concentration and size. The concentration and size of sp (2) content cluster is regulated by the coalescence of carbon globules into clusters, which evolves with deposition conditions.
Resumo:
Amorphous conducting carbon films are prepared by plasma assisted chemical vapour deposition and their d.c. conductivity (similar to 100 Scm(-1)) is studied from 300K down to 4.2K. The films were irradiated by high energy ion beam(I+13, 170 MeV) with a dose of 10(13) ions/cm(2). As a result a marked decrease in conductivity by two to three orders in magnitude was observed. The structural changes and the defects in the films caused by ion irradiation are studied using photoluminescence, persistent photoconductivity, and ESR spectroscopy.
Resumo:
Laser micro-Raman spectroscopic measurements were done on the amorphous conducting carbon films obtained from maleic anhydride by pyrolysis process. We have found a predominant broad peak around 1140 cm(-1), in addition to the normally observed peaks in amorphous carbons around 1350 and 1600 cm(-1), and peak of medium intensity around 800 cm(-1). Here we discuss the possibility of conjugated polymer like bond alternating structure which can give rise to these unusual Raman features. (C) 1997 American Institute of Physics.
Resumo:
We report on neutron diffraction study of a new form of conducting amorphous carbon up to Q similar to 14.5 Angstrom(-1). The bond distances from first two peaks in g(r) are 1.45 and 2.49 Angstrom, very similar to those in sputtered truly amorphous carbon films (Li and Lannin, Phys. Rev. Lett. 65 (1990) 1905). The first coordination number is 3.1 (+/- 0.1) indicating predominantly sp(2) hybridisation (ideal no. = 3). However, S(Q) itself shows vestiges of (0 0 2), (1 0) and (1 1) peaks, typical of glassy carbon (Mildner, J. Non-Cryst. Solids 47 (1982) 391). (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
We report the successful synthesis of crystalline carbon nitride by chemical vapor deposition of certain nitrogen containing organic precursors. The precursor is heated and the vapors enter the hot deposition zone where they are pyrolysed and deposited in the form of thin films over pretreated substrates. The powder x-ray diffraction analysis shows clear peaks corresponding to the carbon nitride crystals of tetragonal form in addition to a broad hump corresponding to the amorphous nitrogenated carbon. The crystallites size is similar to300Angstrom and the volume fraction of the crystallites is about similar to7%. The optimum conditions of preparation are found out. The Infrared spectra of these samples also suggest the formation of Carbon Nitride crystals. The analysis reconfirms that the material contains crystallites of Carbon Nitride embedded in an amorphous matrix of nitrogenated carbon. Further the material is characterized by C,H,N elemental analysis, EDX and Raman spectra. Since all the above analyses probe the bulk material, the background amorphous matrix in this case, expecting a clear evidence of nanometer sized crystallites from these tests are unlikely. Attempts are being made to increase the yield of these carbon nitride crystallites.
Resumo:
We present the synthesis and properties of iodine incorporated amorphous carbon films. Optical studies depict a decrease in band gap with variation in iodine content and pyrolysis temperature. Tuning of the metal-insulator transition is achieved by varying the pyrolysis temperature and iodine concentration. Appreciable decrease in magnetoresistance is observed with iodine incorporation, but negative magnetoresistance typical behavior of metallic samples is not witnessed.