988 resultados para Amorphous silicon


Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is commonly believed that in order to synthesize high-quality hydrogenated amorphous silicon carbide (a-Si1-xCx : H) films at competitive deposition rates it is necessary to operate plasma discharges at high power regimes and with heavy hydrogen dilution. Here we report on the fabrication of hydrogenated amorphous silicon carbide films with different carbon contents x (ranging from 0.09 to 0.71) at high deposition rates using inductively coupled plasma (ICP) chemical vapour deposition with no hydrogen dilution and at relatively low power densities (∼0.025 W cm -3) as compared with existing reports. The film growth rate R d peaks at x = 0.09 and x = 0.71, and equals 18 nm min-1 and 17 nm min-1, respectively, which is higher than other existing reports on the fabrication of a-Si1-xCx : H films. The extra carbon atoms for carbon-rich a-Si1-xCx : H samples are incorporated via diamond-like sp3 C-C bonding as deduced by Fourier transform infrared absorption and Raman spectroscopy analyses. The specimens feature a large optical band gap, with the maximum of 3.74 eV obtained at x = 0.71. All the a-Si1-xCx : H samples exhibit low-temperature (77 K) photoluminescence (PL), whereas only the carbon-rich a-Si1-xCx : H samples (x ≥ 0.55) exhibit room-temperature (300 K) PL. Such behaviour is explained by the static disorder model. High film quality in our work can be attributed to the high efficiency of the custom-designed ICP reactor to create reactive radical species required for the film growth. This technique can be used for a broader range of material systems where precise compositional control is required. © 2008 IOP Publishing Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Passivation of point and extended defects in GaSb has been observed as a result of hydrogenated amorphous silicon (a-Si:H) treatment by the glow discharge technique. Cathodoluminescence (CL) images recorded at various depths in the samples clearly show passivation of defects on the surface as well as in the bulk region. The passivation of various recombination centers in the bulk is attributed to the formation of hydrogen-impurity complexes by diffusion of hydrogen ions from the plasma a-Si:H acts as a protective cap layer and prevents surface degradation which is usually encountered by bare exposure to hydrogen plasma. An enhancement in luminescence intensity up to 20 times is seen due to the passivation of nonradiative recombination centers. The passivation efficiency is found to improve with an increase in a-Si:H deposition temperature. The relative passivation efficiency of donors and acceptors by hydrogen in undoped and Te-compensated p-GaSb has been evaluated by CL and by the temperature dependence of photoluminescence intensities. Most notably, effective passivation of minority dopants in tellurium compensated p-GaSb is evidenced for the first time. (C) 1996 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fourier Transform Infrared (FTIR) spectroscopic analysis has been carried out on the hydrogenated amorphous silicon (a-Si:H) thin films deposited by DC, pulsed DC (PDC) and RF sputtering process to get insight regarding the total hydrogen concentration (C-H) in the films, configuration of hydrogen bonding, density of the films (decided by the vacancy and void incorporation) and the microstructure factor (R*) which varies with the type of sputtering carried out at the same processing conditions. The hydrogen incorporation is found to be more in RF sputter deposited films as compared to PDC and DC sputter deposited films. All the films were broadly divided into two regions namely vacancy dominated and void dominated regions. At low hydrogen dilutions the films are vacancy dominated and at high hydrogen dilutions they are void dominated. This demarcation is at C-H = 23 at.% H for RF, C-H = 18 at.% H for PDC and C-H = 14 at.% H for DC sputter deposited films. The microstructure structure factor R* is found to be as low as 0.029 for DC sputter deposited films at low C-H. For a given C-H, DC sputter deposited films have low R* as compared to PDC and RF sputter deposited films. Signature of dihydride incorporation is found to be more in DC sputter deposited films at low C-H.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vacancy, void incorporation and Si-H-x configuration in hydrogenated amorphous silicon (a-Si:H) thin films was studied. Films were grown by Direct Current (DC), pulsed DC and Radio Frequency (RF) magnetron sputtering. Fourier Transform Infrared (FTIR) spectroscopic analysis has been carried out on the films and found that, the a-Si: H films grown by DC magnetron sputtering are of good quality compared to pulsed DC and RF deposited films. The effect of Substrate temperature (T-S) on the total hydrogen concentration (C-H), configuration of hydrogen bonding, density (decided by the vacancy and void incorporation) and the microstructure factor (R*) was studied. T-S is found to be an active parameter in affecting the above said properties of the films. The films contain both vacancies and voids. At low hydrogen dilutions the films are vacancy dominated and at high hydrogen dilutions they are void dominated. It is found that T-S favors monohydride (Si-H) bonding at the cost of dihydride (Si-H-2) bonding. This dividing line is at C-H=14 at.% H for DC sputter deposited films. The microstructure structure factor R* is found to be zero for as deposited DC films at T-S=773K. The threshold C-H for void dominated region is found to be C-H=23 at.% H for RF, C-H=18 at.% H for PDC and C-H similar to 14 at.%H for DC sputter deposited films.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Amorphous hydrogenated silicon (a-Si:H) is well-known material in the global semiconductor industry. The quality of the a-Si:H films is generally decided by silicon and hydrogen bonding configuration (Si-H-x, x=1,2) and hydrogen concentration (C-H). These quality aspects are correlated with the plasma parameters like ion density (N-i) and electron temperature (T-e) of DC, Pulsed DC (PDC) and RF plasmas during the sputter-deposition of a-Si:H thin films. It was found that the N-i and T-e play a major role in deciding Si-H-x bonding configuration and the C-H value in a-Si:H films. We observed a trend in the variation of Si-H and Si-H-2 bonding configurations, and C-H in the films deposited by DC, Pulsed DC and RF reactive sputtering techniques. Ion density and electron energy are higher in RF plasma followed by PDC and DC plasma. Electrons with two different energies were observed in all the plasmas. At a particular hydrogen partial pressure, RF deposited films have higher C-H followed by PDC and then DC deposited films. The maximum energy that can be acquired by the ions was found to be higher in RF plasma. Floating potential (V-f) is more negative in DC plasma, whereas, plasma potential (V-p) is found to be more positive in RF plasma. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mechanical properties of thin films such as residual stress and hardness are of paramount importance from the device fabrication point of view. Intrinsic stress in sputtered films can be tensile or compressive as decided by the number density and the energy of the plasma species striking the growing film. In the presence of hydrogen we analyzed the applicability of idealized stress reversal curve for amorphous silicon thin films deposited by DC, pulsed DC (PDC) and RF sputtering. We are successfully able to correlate the microstructure with the stress reversal and hardness. We observed a stress reversal from compressive to tensile with hydrogen incorporation. It was found that unlike in idealized stress reversal curve case, though the energy of plasma species is less in DC plasma, DC deposited films exhibit more compressive stress, followed by PDC and RF deposited films. A tendency towards tensile stress from compressive stress was observed at similar to 13, 18 and 23 at%H for DC, PDC and RF deposited films respectively, which is in exact agreement with the vacancy to void transition in the films. Regardless of the sputtering power mode, the hardness of a-Si:H films is found to be maximum at C-H similar to 10 at%H. Enhancement in hardness with C-H (up to C-H similar to 10 at%H) is attributed to increase of Si-H bonds. Beyond C-H similar to 10 at%H, hardness starts falling. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports the fabrication and electrical characterization of high tuning range AlSi RF MEMS capacitors. We present experimental results obtained by a surface micromachining process that uses dry etching of sacrificial amorphous silicon to release Al-1%Si membranes and has a low thermal budget (<450 °C) being compatible with CMOS post-processing. The proposed silicon sacrificial layer dry etching (SSLDE) process is able to provide very high Si etch rates (3-15 μm/min, depending on process parameters) with high Si: SiO2 selectivity (>10,000:1). Single- and double-air-gap MEMS capacitors, as well as some dedicated test structures needed to calibrate the electro-mechanical parameters and explore the reliability of the proposed technology, have been fabricated with the new process. S-parameter measurements from 100 MHz up to 2 GHz have shown a capacitance tuning range higher than 100% with the double-air-gap architecture. The tuning range can be enlarged with a proper DC electrical bias of the capacitor electrodes. Finally, the reported results make the proposed MEMS tuneable capacitor a good candidate for above-IC integration in communications applications. © 2004 Elsevier B.V. All rights reserved.