674 resultados para Aminas Bioativas. Litopenaeus Vannamei. Camarão. Cromatografiaiônica
Resumo:
In this study, we worked with the validation of a methodology for analysis of bioactive amines in shrimp, considering it to be one of the main products of the northriograndense trade balance, maintaining the state of Rio Grande do Norte topped the list of Brazilian exports of this product the last decade. The sector of the Brazilian shrimp works exclusively with gray shrimp Litopenaeus Vannamei since the late 1990s. This study used liquid chromatography with conductimetric detector, using as the mobile phase methylsulfonic 3 mM acid (MSA) with gradient and phase C18 column with reverse the development of methodology for the analysis of bioactive amines in shrimp. In the sample preparation was used as 5% trichloroacetic acid (TCA) extraction solution. Validation analysis of biotativas amines (putrescine - PUT, histamine - HIST, agmatine - AGM, spermidine - EPD and spermine - EPN) in shrimp, the linear working range was 0.1 to 2.0 mg L-1 to was sensitive, homoscedastic, in effect, selective, accurate and precise array. Thus, considered feasible for these determinations bioactive amines in this array. Determined the concentration of these amines in fresh shrimps (AGM = 0.61 ± 0.05 mg kg- 1 EPD = 2.57 ± 0.14 mg kg-1 and EPN = 1.79 ± 0.11 mg kg-1), and freezing weather predetermined in cooked shrimp (AGM = 6.28 ± 0.18 mg kg-1, EPD = 12.72 ± 0.02 mg kg- 1 and EPN = 22.30 ± 0.60 mg kg-1), the shrimp with twenty-four hour stay at room temperature (PUT = 879.52 ± 28.12 mg kg-1, AGM = 848.13 ± 19.40 mg kg-1, ESPD = 13.59 ± 0.97 mg kg-1 and ESPN = 18.47 + 1.57 mg kg-1). In shrimp subjected to freezing for a week, two weeks, three weeks and four weeks, the results showed that there is an increase in the content of agmatine (7.31 ± 0.21 mg kg-1) while in spermine ( 1.22 ± 0.14 mg kg-1) and spermidine (below limit of quantification) there was a decrease in the freeze time, while there is a decrease in the level of spermidine not reaching detectad. The putrescine was only found in shrimp that remained for 24 hours at room temperature and histamine was not found in any of the samples
Resumo:
The aim of this study was to test the sediment preference of L. vannamei shrimp. It was observed shrimp visit frequency, swimming and burying behaviour at different sediment compositions for 24h. Juvenile (0.93 ± 0.29g) and sub-adult shrimps (10.0 ± 1.18g) were obtained from the aquaculture station at Universidade Federal Rural do Semi-Árido UFERSA, and held in a plastic tank (water volume 500 L) supplied with aerated water and kept at constant temperature, pH, and salinity. Shrimp was fed by commercial shrimp dry food. The experimental substrates were composed by A: medium sand + thick sand + very thick sand + gravel; B: very fine sand + fine sand; and C: silt + clay. Thus, six different substrate combinations were tested: A, B, C, A+B, A+C, B+C. To test preference, it was used a cylindrical tank (40 l) divided into six differently substrate compartments. A single shrimp was introduced each tank and the frequency at which this shrimp visited each compartment was recorded over a 24h study period. It was tested 54 shrimp (18 sub-adult males, 18 subadult females and 18 juveniles). For each trial, sediment and water were changed to avoid pheromones and residues influence. Shrimp were weighted and sub-adults were divided by sex: males present petasma and females present thelycum. Data were collected on the experimental day at 19:30; 20:30; 00:30; 1:30; 05:30; 06:30; 13:30 and 14:30 h. At each time point, shrimp were observed for 20-min periods, in which we noted down which compartment the shrimp was occupying at 2-min intervals. Thus, for each period we had eleven observations (88 observations per day). For observations at night, it was used dim red light that did not affect shrimp behaviour. At each 20-min period, it was observed visit frequency in each substrate, if shrimp was burred or not or if it was swimming. There was not significant difference between light and dark burry activity for females. Swimming activity was significantly higher at night, mainly at 00:30 and 01:30 h. All L. vannamei shrimp showed preference for sediment B. This animal presents cyclic activity, spends the day light period buried and swims at night
Resumo:
The aim of this study was to test the sediment preference of L. vannamei shrimp. It was observed shrimp visit frequency, swimming and burying behaviour at different sediment compositions for 24h. Juvenile (0.93 ± 0.29g) and sub-adult shrimps (10.0 ± 1.18g) were obtained from the aquaculture station at Universidade Federal Rural do Semi-Árido UFERSA, and held in a plastic tank (water volume 500 L) supplied with aerated water and kept at constant temperature, pH, and salinity. Shrimp was fed by commercial shrimp dry food. The experimental substrates were composed by A: medium sand + thick sand + very thick sand + gravel; B: very fine sand + fine sand; and C: silt + clay. Thus, six different substrate combinations were tested: A, B, C, A+B, A+C, B+C. To test preference, it was used a cylindrical tank (40 l) divided into six differently substrate compartments. A single shrimp was introduced each tank and the frequency at which this shrimp visited each compartment was recorded over a 24h study period. It was tested 54 shrimp (18 sub-adult males, 18 subadult females and 18 juveniles). For each trial, sediment and water were changed to avoid pheromones and residues influence. Shrimp were weighted and sub-adults were divided by sex: males present petasma and females present thelycum. Data were collected on the experimental day at 19:30; 20:30; 00:30; 1:30; 05:30; 06:30; 13:30 and 14:30 h. At each time point, shrimp were observed for 20-min periods, in which we noted down which compartment the shrimp was occupying at 2-min intervals. Thus, for each period we had eleven observations (88 observations per day). For observations at night, it was used dim red light that did not affect shrimp behaviour. At each 20-min period, it was observed visit frequency in each substrate, if shrimp was burred or not or if it was swimming. There was not significant difference between light and dark burry activity for females. Swimming activity was significantly higher at night, mainly at 00:30 and 01:30 h. All L. vannamei shrimp showed preference for sediment B. This animal presents cyclic activity, spends the day light period buried and swims at night
Resumo:
The aim of this study was to test the sediment preference of L. vannamei shrimp. It was observed shrimp visit frequency, swimming and burying behaviour at different sediment compositions for 24h. Juvenile (0.93 ± 0.29g) and sub-adult shrimps (10.0 ± 1.18g) were obtained from the aquaculture station at Universidade Federal Rural do Semi-Árido UFERSA, and held in a plastic tank (water volume 500 L) supplied with aerated water and kept at constant temperature, pH, and salinity. Shrimp was fed by commercial shrimp dry food. The experimental substrates were composed by A: medium sand + thick sand + very thick sand + gravel; B: very fine sand + fine sand; and C: silt + clay. Thus, six different substrate combinations were tested: A, B, C, A+B, A+C, B+C. To test preference, it was used a cylindrical tank (40 l) divided into six differently substrate compartments. A single shrimp was introduced each tank and the frequency at which this shrimp visited each compartment was recorded over a 24h study period. It was tested 54 shrimp (18 sub-adult males, 18 subadult females and 18 juveniles). For each trial, sediment and water were changed to avoid pheromones and residues influence. Shrimp were weighted and sub-adults were divided by sex: males present petasma and females present thelycum. Data were collected on the experimental day at 19:30; 20:30; 00:30; 1:30; 05:30; 06:30; 13:30 and 14:30 h. At each time point, shrimp were observed for 20-min periods, in which we noted down which compartment the shrimp was occupying at 2-min intervals. Thus, for each period we had eleven observations (88 observations per day). For observations at night, it was used dim red light that did not affect shrimp behaviour. At each 20-min period, it was observed visit frequency in each substrate, if shrimp was burred or not or if it was swimming. There was not significant difference between light and dark burry activity for females. Swimming activity was significantly higher at night, mainly at 00:30 and 01:30 h. All L. vannamei shrimp showed preference for sediment B. This animal presents cyclic activity, spends the day light period buried and swims at night
Resumo:
A carcinicultura amazônica possui potencial produtivo que favorece seu desenvolvimento e está atualmente direcionada para o camarão marinho Litopenaeus vannamei. Como a produção da carcinicultura marinha é condicionada à qualidade dos parâmetros físicos, químicos, biológicos, hidrológicos e sanitários da água e dos sedimentos, aliado as variações entre os períodos sazonais; um adequado acompanhamento dessas variáveis no cultivo é indispensável para a sua produtividade. Além disso, para verificar a viabilidade das técnicas de manejo utilizadas, recentemente se destaca o uso da estatística na análise dos dados das fazendas de cultivo de camarão, para modelar os parâmetros relacionados ao cultivo e, assim melhorar a produção e diminuir custos. Deste modo, para avaliar a influência da sazonalidade da região amazônica neste processo produtivo, foi realizados duas abordagens: 1) foram analisados os dados de produção dos últimos cinco anos para verificar a interação entre sazonalidade e a produtividade e 2) O monitoramento de dois ciclos de cultivo, o primeiro de janeiro a abril de 2011 (período chuvoso), e o segundo de julho a novembro de 2011 (período menos chuvoso para avaliar as mudanças sazonais na qualidade da água e no desempenho zootécnico do camarão marinho, e a interação deste processo no ambiente adjacente. O estudo foi realizado em uma fazenda comercial em Curuçá/PA com lâmina d’água de 4 ha, sendo quatro viveiros com 1 ha cada, que são estocados alternadamente com criação intensiva da espécie. A série histórica revelou que a sazonalidade da região amazônica altera a qualidade da água no cultivo do camarão marinho, ocorrendo diferenciação evidente entre os períodos analisados, verificando-se uma melhor produção no período menos chuvoso; fato não observado no ano de 2011, onde o desempenho zootécnico ocorreu dentro dos padrões adequados para o cultivo nos dois períodos sazonais e se mostrou economicamente viável em ambos os períodos de cultivo. Os índices de qualidade da água refletiram uma interação entre os ambientes avaliados, o que sugere melhorias na utilização da bacia de sedimentação.
Resumo:
Este trabalho objetivou avaliar durante um ciclo de cultivo de Litopenaeus vannamei com periodicidade quinzenal de 20/09/08 a 05/12/08 a comunidade planctônica e os parâmetros abióticos em duas estações dentro de um viveiro no município de Curuça, Estado do Pará. Foram medidos transparência, pH, oxigênio dissolvido, salinidade e temperatura, sendo os quatro últimos registrados na superfície e próximo ao fundo e realizadas coletas para o estudo do microfitoplâncton, zooplâncton e clorofila “a”. A temperatura variou de 31,5ºC a 35ºC. O oxigênio dissolvido variou de 4,2 mg/l a 15,5 mg/l. O pH manteve-se ligeiramente alcalino, entre 8,1 e 9,4. A menor salinidade foi 26,9 e a maior, 30 ppm. A transparência diminuiu de 55 cm para 17 cm. Clorofila a teve um mínimo de 2,33mg/m3 e um máximo de 471,34 mg/m3. Foram identificados 95 taxa e Bacillariophyta foi o grupo mais importante, sendo Navicula, Pleurosigma e Nitzschia os principais responsáveis pela sua dominância. A maior densidade registrada para o microfitoplâncton foi de 104.400 org/l no início do cultivo (20/09) e a menor foi 3.600 org/l na última coleta (05/12). A média de diversidade para o fitoplâncton na Estação 01 foi 1,49 bits/ind e na Estação 02, 1,43 bits/ind. Foram identificados 34 taxa zooplanctônicos, sendo Copepoda o grupo mais importante e Acartia lilljeborgi, Euterpina acutifrons, Oithona hebes, Oithona oswaldocruzzi e Parvocalanus crassirostris os principais responsáveis pela sua dominância. A maior densidade registrada para o zooplâncton foi de 162.000 org/m3 no início do cultivo (20/09) e a menor foi 375 org/m3 no dia 05/11. A diversidade também foi baixa tendo médias de 1,34 bits/ind e 1,10 bits/ind nas estações 01 e 02, respectivamente. Entre as principais conclusões: a comunidade microfitoplanctônica foi dominada pelas diatomáceas, sendo os principais gêneros responsáveis por esta dominância: Pleurosigma, Nitzschia e Navicula e a divisão Bacillariophyta foi o grupo mais importante tanto em termos de riqueza quanto de densidade; a classe dinophyceae revelou estar melhor adaptados em águas mais claras; os copépodos foram dominantes, sendo Acartia lilljeborgi, Oithona hebes, Oithona oswaldocruzzi, Parvocalanus crassirostris e Euterpina acutifrons as espécies que mais contribuíram para esta dominância; Clorofila “a” respondeu aos maiores aportes de ração durante o cultivo, aumentando com o tempo; as variáveis físico-químicas que sofreram influência do cultivo, variando significativamente ao longo do tempo foram: pH, oxigênio dissolvido e transparência e o viveiro investigado foi considerado homogêneo avaliando sua profundidade e área.
Resumo:
In recent years the heparin has been the subject of several studies that aim to expand its use as a therapeutic agent, due to its ability to modulate the activity of various proteins that play important roles in the regulation of pathophysiological processes. In several experiments and preclinical trials, heparin has demonstrated an anti-inflammatory role. However, its clinical use is limited, due to its strong anticoagulant activity and hemorrhagic complications. For this reason, considerable efforts have been employed in discovery of heparin analogous (heparinoid) with reduced side effects, that retain the anti-inflammatory properties of heparin. In this context, a heparinoid obtained from the head of Litopenaeus vannamei shrimp, which presents a structural similarity to heparin, showed, in previous studies, anti-inflammatory activity in a model of acute peritonitis with reduced anticoagulant effect in vitro and low hemorrhagic activity. Thus, the present work had as objective to evaluate the effect the heparinoid of the cephalothorax of gray shrimp on the acute inflammatory response in different times (3 or 6 hours after the induction of inflammatory stimulus), using the model of acute peritonitis induced in mice. It was also analyzed the HL effect over the activity of elastase, an enzyme involved in leukocyte recruitment. Furthermore to check if the different doses of heparin and heparinoid change the hemostatic balance in vivo, was assessed the effect of these compounds on the plasma clotting time in animals submitted to inflammation. The results show that in 3 hours, all doses of heparinoid were able to prevent efficiently in the acute inflammatory process without any anticoagulant effects, unlike the extrapolation dose of heparin, which has induced a large hemorrhage due its high anticoagulant activity. However, 6 hours after induction of inflammation, only the dosages of 0.1 and 1.0 μg/Kg of heparin and 1.0 μg/Kg of heparinoid kept anti-migratory effect, without changing of the hemostatic balance. These results indicate that the anti-migratory effect of theses compounds depends on the dosage and time of inflammatory stimulus. The HL and heparin were also able to inhibit the activity of the enzyme elastase. The discovery of this bioactive compound in the cephalothorax of shrimps can arouse great interest in biotechnology, since this compound could be useful as a structural model interesting for the development of new therapeutic agents for peritonitis
Resumo:
without practical results so far. Protocols used in biotechnological cultured aquatic organisms aimed at increasing growth rates and disease resistance, have been studied and perfected. Among the available techniques, the application of chromosomal manipulation, although still nascent, is presented as a tool aimed at mitigating ecological and economical issues in shrimp farming. The polyploidization artificial method already employed in fish and shellfish, has been widely researched for use in farmed shrimp. Some limitations of this method of expansion in shrimp refer to a better knowledge of cytogenetic aspects, the level of sexual dimorphism and performance in growing conditions. To contribute on some of these issues, the present study aimed to characterize cytogenetic species Litopenaeus vannamei (Decapoda) and Artemia franciscana (Anostraca), analyze the effectiveness of methods for detection of ploidy, through the use of flow cytometry in processes of induction polyploidy cold thermal shock at different stages of development of newly fertilized eggs. Additionally, aimed also the qualitative and quantitative comparison of larval development between diploid and polyploid organisms, besides the identification of sexual dimorphism in L. vannamei, through geometric morphometrics. The results provide information relevant to the improvement and widespread use of biotechnological methods applied toward national productivity in shrimp farming
Resumo:
The shrimp farming industry is the most profitable area of the aquaculture at Rio Grande do Norte (RN) state, which is one of the largest producers in Brazil. However the infections that affect the shrimp cause major economic losses. The infection is a result of the interaction between the shrimp, the environment and pathogen. The change of these factors may lead to a condition of stress and susceptibility to opportunistic infections. One of these infections caused by Infectious Hypodermal and Hematopoietic Necrosis Virus (IHHNV) is widely distributed in several countries and affects a wide range of hosts. To optimize conditions for production of Litopenaeus vannamei shrimp, the more species cultivated in Brazil, it is necessary to understand the effects of environmental factors in the susceptibility of this species to infections. The aim of this study was to determine the IHHNV prevalence and to investigate the influence of environmental factors as salinity, temperature, stocking density, dissolved oxygen and rainfall in the IHHNV incidence in L. vannamei grown in farms, in the RN state. To determine the IHHNV prevalence were used 1089 samples of L. vannamei collected in seven farms. To perform the study about the influence of environmental factors, 525 samples of L. vannamei shrimp were collected in eight farms located in regions of low (0-1 ), medium (21-30 ) and high (38-57 ) salinity, using extensive (≤15 shrimp/m2 ), semi-intensive (18-33 shrimp/m2) or intensive (>36 shrimp/m2) stocking density systems. The IHHNV infection was determined in pleopod and hemolymph using the polymerase chain reaction (PCR). The environmental factors were recorded during the collection of animals, using a refractometer to measure the salinity and a multi-parameter meter to measure the temperature and concentration of dissolved oxygen in the water. The IHHNV prevalence in RN was 43% (468 infected shrimp out of 1089), varying on different farms. On the seven farms studied, IHHNV prevalence ranged from 18.6% to 54.8%. The infection rates in the shrimp cultured in low, medium and high salinity were respectively 43.10% (125/290), 31.2% (15/48) and 24.6% (46/187) and was significantly higher in shrimp grown in low salinity (P<0.001). The infection rates in ponds of extensive, semi-intensive and intensive systems were respectively, 28.7%, 28.28% and 47.84%, and was significantly higher in high stocking densities (P<0.001). This study indicated a high IHHNV prevalence and a significant effect of salinity and stocking density, but not of the temperature, rainfall and dissolved oxygen on the IHHNV infection rate in the L. vannamei shrimp cultured in the northeastern Brazil
Resumo:
The main problem faced by the shrimp industry are the infectious diseases. The hypodermal and hematopoietic necrosis infection (IHHN) is one of the major cause of disease in the cultured shrimp, Litopenaeus vannamei. Environmental changes involving water quality, oxygen concentration, salinity, temperature, stocking density, presence of pathogens, among others, triggering a stressing condition for the cultured shrimp, weakening them and allowing the outbreak of diseases. The stress on the animal leads to a change in the molecules immune response components, which can be used as indicators of shrimp health. Thus, the objective of the present study was to evaluate the effect of salinity, stocking density and IHHNV infection on the L. vannamei shrimp. The immune parameters used to check the shrimp health were the total hemocytes counts (THC), the agglutinating activity (AA) and the clotting time (CT) of the serum of shrimp. These parameters were analyzed in healthy and IHHNV-infected shrimp, grown in low (0-0.5 ), medium (19-24 ) and high (> 38 ) salinity, and extensive (7-12 cam.m-2), semi-intensive (15-25 cam.m-2) and intensive (33-45 cam.m -2) stocking density. The IHHNV infection rate was significantly higher in low salinity (P<0.005) and intensive density (P<0.005), both stressful conditions for L. vannamei. Low salinity significantly increased THC (P<0.05) and decreased and CT (P<0.05) in healthy and infected shrimp, but AA (P<0.05) significantly decreased in healthy shrimp at medium salinity. Culture intensification did not affect the THC, AA and CT of healthy and infected shrimp (P>0.05). The IHHNV infection did not affect any immune parameters of shrimp cultured at different salinities and stocking densities. It is necessary to emphasize that this study was conducted in shrimp grown in ponds, where several environmental factors are acting simultaneously. Thus, further studies are needed about the influence of other environmental factors on the immune parameters of shrimp cultured in pond
Resumo:
Farming of marine shrimp is growing worldwide and the Litopenaeus vannamei (L. vannamei) shrimp is the species most widely cultivated. Shrimp is an attractive food for its nutritional value and sensory aspects, being essential the maintenance of this attributes throughout storage, which takes place largely under freezing. The aim of this research was to evaluate quality characteristics of Litopenaeus vannamei shrimp, during freezing storage and to verify the effect of rosemary (Rosmarinus officinalis) adding. Considering the reutilization of processing shrimp wastes, total carotenoids analysis were conducted in waste of Litopenaeus vannamei shrimp and in the flour obtained after dryer. Monthly physicochemical and sensorial analysis were carried out on shrimp stored at 28,3 ± 3,8ºC for 180 days. Samples were placed in polyethylene bags and were categorized as whole shrimp (WS), peeled shrimp (PS), and PS with 0,5% dehydrated rosemary (RS). TBARS, pH, total carotenoid and sensorial Quantitative Descriptive Analysis (QDA) were carried out. Carotenoid total analysis was conducted in fresh wastes and processed flour (0 day) and after 60, 120 and 180 days of frozen storage. After 180 days, RS had lower pH (p = 0.001) and TBARS (p = 0.001) values and higher carotenoids (p = 0.003), while WS showed higher carotenoid losses. Sensory analysis showed that WS were firmer although rancid taste and smell were perceived with greater intensity (p = 0.001). Rancid taste was detected in RS only at 120 days at significantly lower intensity (p = 0.001) than WS and PS. Fresh wastes had 42.74μg/g of total carotenoids and processed flour 98.51μg/g. After 180 days of frozen storage, total carotenoids were significantly lower than 0 day (p<0,05). The addition of rosemary can improve sensory quality of frozen shrimp and reduce nutritional losses during storage. Shrimp wastes and flour of L. vannamei shrimp showed considerable astaxanthin content however, during storage it was observed losses in this pigment
Resumo:
Cinquenta amostras de camarão fresco e refrigerado (Litopenaeus vannamei) foram coletadas em diferentes pontos de comercialização na cidade de Natal RN. As amostras foram maceradas em um gral estéril e 25 gramas semeadas em 225mL de APA contendo 1% de NaCl e 25g em 225mL de CL incubadas a 35ºC - 24 horas. O crescimento em APA foi semeado em placas de Ágar TCBS, incubadas a 35ºC-24h para isolamento de Vibrio e Aeromonas. O crescimento do CL foi semeado em Agar EAM, para isolamento de coliformes. Dos 102 isolados, 91 (89,2%) pertenciam ao gênero Vibrio e 11 (10,8%) ao gênero Aeromonas, com predominância de V. cholerae não O1/não O139, V. alginolyticus, V. carchariae e V. parahaemolyticus K- e A. veronii biogrupo sobria , A. jandaei, A. schubertii, A. veronii biogrupo veronii e A. hydrophila. A menor eficiência entre os antimicrobianos foi da AMP (57,8% de resistência) seguida da AMK (29,4%) e TCY (21,6%). As 39 cepas de Vibrio e Aeromonas multirresistentes se distribuíram em 10 perfis distintos, sendo que um revelou cinco marcos (AMP, CHL, NIT, SXT e TCY) em um isolado de V. carchariae de camarão, adquirido em supermercados. O índice MAR, nas 39 cepas variou de 0,28 a 0,42, sugerindo que são de risco na transferência e difusão da resistência na cadeia alimentar. Após a cura plasmidial pelo tratamento com AO de 24 cepas multirresistentes e com resistência intermediária de víbrio e aeromonas escolhidas aleatoriamente, 13 perderam totalmente a resistência e 7 perderam parcialmente, sendo que o maior percentual de perda da resistência ocorreu nas cepas de V. cholerae não O1 e não O139 (6 cepas), se concentrando nos marcos de resistência a AMP (13), AMK (11), TCY(8) e CIP(3). Os resultados da conjugação realizada entre amostras de Vibrio xvi curadas e a E. coli K12C600 demonstraram que 78,5% das culturas de Vibrio testadas revelaram capacidade de transferência para o gene que confere resistência a AMP e 28,5% para a TCY. Dos coliformes, E. coli foi a mais frequente, seguida de Citrobacter spp, isoladas em 40,3% e 27,5% das amostras respectivamente. AMP foi o antimicrobiano menos eficaz, seguido de TCY. As 11 cepas multirresistentes se distribuíram em 9 perfis distintos, um deles constituído de cinco marcos (AMP, NIT, TCY, CHL, SXT), albergados em uma cepa de Klebsiella spp, oriunda de camarão adquirido em supermercado, similar ao resultado obtido em V. carchariae. Conclui-se que, os camarões marinhos frescos e refrigerados, comercializados em Natal-RN evidenciaram contaminação com coliformes, víbrios e aeromonas multirresistentes a antimicrobianos comumente utilizados na terapia médica e veterinária, e que, possivelmente, a transferência de genes de resistência entre bactérias se constitui um sério problema de saúde pública
Resumo:
Shrimp farming in Brazil is a consolidated activity, having brought economical and social gains to several states with the largest production concentrated in the northeast. This fact is also reflected in higher feed intake, necessitating a more efficient feed management. Currently, management techniques already foresee food loss due to molting. In this sense, studies relating shrimp s digestive physiology, molting physiology and behavioral response of shrimp feed can optimize the feed management. Thus, our study aimed to evaluate the behavioral response of the marine shrimp L. vannamei (Crustacea: Penaeidae) in accordance with the stages of moulting cycle and feeding schedules based on higher or lower activity of proteolytic digestive enzymes; also, to investigate the influence of feeding schedule on hepatosomatic index and non-specific and specific protease activity (trypsin). Experiments were carried out at the Laboratory of Shrimp Behavioral Studies at UFRN in partnership with the Laboratory of Enzimology UFPE. Juveniles of L. vannamei weighting 5.25 g (+ 0.25 g) were kept in aquaria at a density of 33 shrimp m -2. In the first experiment, shrimp were fed in the light phase or in the dark phase for 8 days; in the ninth day, the animals were observed for 15 minutes every hour during the 12 hours of each phase of the photoperiod. We recorded the frequency of inactivity, exploration, food intake, burrowing, swimming and crawling behavior. At the end of the 12th observation session, the shrimp were sacrified and classified by the method of setogenesis in the molt cycle stages A, B, C, D0, D1, D2 or D3. We found that the shrimp in A stage show high levels of inactivity. Moreover, the frequency of food intake was very low. The shrimp in D3 stage also had low food intake and high inactivity associated with elevated frequencies of burrowing. In the second experiment, shrimp were kept in physiological acclimation to experimental conditions for 28 days, distributed in 12 treatments in the light phase and 12 treatments in the dark phase. In the end, the animals were sacrified and dissected to assess non-specific and specific protease activity (trypsin) activity. In general, these parameters did not vary among animals fed in the light phase and those fed in the dark phase. However, significant differences were found in the activity of specific and nonspecific proteases in relation to food treatment. In the light phase, the major proteolytic activities converged to 10 hours after the start of the light phase, while the lowest activities converged to 6 hours after the beginning of this phase. In the dark phase, the highest enzyme activity converged to 12 hours after the onset of phase, while the lowest activities converged to 3 hours after the onset of phase. In the third experiment, we sought to evaluate the behavioral responses of shrimp in relation to dietary treatments based on higher or lower activity of proteolytic enzymes, considering the results of the second experiment. The behavioral categories observed were the same as the ones in the first experiment, with observations of 30 minutes (15min before and 15min after food supply). We found variation in behavioral responses as a function of the treatments, with greater intake of food in shrimp fed during the period of greatest activity of proteolytic enzymes, in the light phase. Thus we see that periodic events associated with the shrimp s physiology interfere in their behavioral responses, revealing situations that are more adjustable to the provision of food, and consequently optimizing feeding management
Resumo:
One of the factors that may interfere with the cultivation of Litopenaeus vannamei is the population density. This study aimed to assess the effect of density on growth, mortality, physical integrity and behavior of shrimp. The study was divided into two stages. At first, the shrimp were placed in tanks at densities of 50, 75 and 100 shrimp m-2. The animals were monitored in relation to the degree of proventricular filling, the stage of the molt cycle and physical integrity three times a week and in relation to the weight and length once a week. Mortality, growth and proventricular filling were not influenced by the density; frequency of records in specific stages of the molt cycle varied according to the density. The lower proportion of broken appendages and higher frequency of necrotic lesions occurred in lower density. The second stage of the research, conducted in aquaria, was divided into two parts. The first described social or feeding behavioral categories: slow displacement by contact, slow displacement by approximation, abrupt displacement by contact, abrupt displacement by approximation, reactivity, cannibalism, occupying the tray, get feed in the tray and get feed outside the tray. In the second part, these and other behavioral categories, described in the literature, were recorded in densities of 50, 75 and 100 shrimp m-2. Mortality was more frequent in higher density. The frequency of most behaviors mentioned above was very low, not differing between densities or being too low to determine differences between them. The behavioral profile of animals in different densities was, in general, very similar, with no difference in exploration, digging and cleaning between the densities. Even so, inactivity, feeding, crawling, burrowing, swimming, and proximity between animals were influenced by the density. These results suggest that some behaviors suffer greater interference from population density. However, the density may not have a broader influence on the animals when other factors, such as physico-chemical parameters of water and feed offering, are adequate
Resumo:
Ao longo das últimas décadas, a carcinicultura vem apresentando um grande crescimento em diversas partes do mundo, com o Brasil seguindo esta tendência mundial (FAO, 2004). Nesta atividade três espécies de camarão têm se destacado como as mais cultivadas, sendo elas Penaeus monodon (Fabricius, 1798), Fenneropenaeus chinensis (Osbeck, 1765) e Litopenaeus vannamei (Boone, 1931), responsáveis por cerca de 80% da produção mundial (FAO, 2004). No Brasil L. vannamei é a espécie mais cultivada, com a produção brasileira correspondendo a 5% da produção mundial (FAO, 2004). L. vannamei é uma espécie marinha originária do Oceano Pacífico, distribuída do México ao Peru. Por ser eurihalino, este camarão pode se adaptar às mais diversas condições de cultivo, desde águas salgadas até de menores salinidades (BRAY et al., 1993; PONCE-PALAFOX et al., 1997), característica que tem aumentado o interesse dos produtores. Embora seja exótica no Brasil, L. vannamei, mostra maior resistência à variação de temperatura e salinidade do que outros camarões peneídeos nativos (BRITO et al., 2000). O alimento do camarão e as estratégias de seu fornecimento têm merecido uma atenção especial do setor, gerando novas técnicas ou seu aperfeiçoamento. A ração nos sistemas de cultivo intensivo e semi-intensivo, por exemplo, é responsável por 50-60% dos custos totais de produção, demonstrando a importância de novas estratégias para minimizar sue uso. O aumento da biomassa do plâncton (alimento natural), e conseqüentemente, da cadeia alimentar, reduz os custos com a alimentação suplementar, influenciando diretamente os custos finais de produção (AVAULT, 2003). Segundo Nunes (1995), o incremento da produtividade natural é tão importante quanto o uso de uma ração nutricionalmente completa e bem balanceada. Logo após a introdução nos viveiros de cultivo, a base da alimentação de L. vannamei é composta, em parte, pelo alimento natural disponível (NUNES et al. 1997; MARTINEZ-CORDOVA et al. 1997; ROTHLISBERG, 1998) complementada com ração comercial. Martinez-Cordova et al. (2002) mostraram que as concentrações de clorofila ‘a’ diminuem cerca de 50% do início ao fim do cultivo, provavelmente devido a pastagem pelo zooplâncton e por alguns invertebrados bentônicos. Além da importância do zooplâncton como alimento para as pós-larvas de camarão nos viveiros de engorda, o uso destes organismos (principalmente copépodes) como alimento vivo na aqüicultura marinha vem recebendo grande atenção nos últimos anos (DELBARE et al. 1996). Tal fato ocorre por serem ricos em fosfolipídios, ácidos graxos essenciais altamente insaturados e antioxidantes naturais, sendo nutricionalmente superiores aos rotíferos e aos náuplios de artemia, comumente usados na larvicultura marinha (SARGENT et al. 1997, STOTTRUP e NOSKER, 1997) promovendo o sucesso as larviculturas de camarão (PAYNE et al. 1998; SCHIPP et al. 1999; PAYNE e RIPPINGALE, 2000). Desta forma, estudos sobre o cultivo intensivo de camarões marinhos que enfoquem a composição da comunidade planctônica, as variáveis bióticas e abióticas no sistema, e a característica dos efluentes gerados, são de grande importância. Assim, os resultados obtidos podem incrementar a produtividade aquática no cultivo, alem de fornecer subsídios para pesquisas posteriores de avaliação e mitigação dos impactos ambientais causados por esta atividade.