2 resultados para Amidohidrolasas


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Evidence shows that the endocannabinoid system modulates the addictive properties of nicotine. In the present study, we hypothesized that spontaneous withdrawal resulting from removal of chronically implanted transdermal nicotine patches is regulated by the endocannabinoid system. A 7-day nicotine dependence procedure (5.2 mg/rat/day) elicited occurrence of reliable nicotine abstinence symptoms in Wistar rats. Somatic and affective withdrawal signs were observed at 16 and 34 hours following removal of nicotine patches, respectively. Further behavioral manifestations including decrease in locomotor activity and increased weight gain also occurred during withdrawal. Expression of spontaneous nicotine withdrawal was accompanied by fluctuation in levels of the endocannabinoid anandamide (AEA) in several brain structures including the amygdala, the hippocampus, the hypothalamus and the prefrontal cortex. Conversely, levels of 2-arachidonoyl-sn-glycerol were not significantly altered. Pharmacological inhibition of fatty acid amide hydrolase (FAAH), the enzyme responsible for the intracellular degradation of AEA, by URB597 (0.1 and 0.3 mg/kg, i.p.), reduced withdrawal-induced anxiety as assessed by the elevated plus maze test and the shock-probe defensive burying paradigm, but did not prevent the occurrence of somatic signs. Together, the results indicate that pharmacological strategies aimed at enhancing endocannabinoid signaling may offer therapeutic advantages to treat the negative affective state produced by nicotine withdrawal, which is critical for the maintenance of tobacco use.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Studies in animal models and humans suggest anti-inflammatory roles on the N acylethanolamide (NAE)-peroxisome proliferators activated receptor alpha (PPARα) system in inflammatory bowel diseases. However, the presence and function of NAE-PPARα signaling system in the ulcerative colitis (UC) of humans remain unknown as well as its response to active anti-inflammatory therapies such as 5-aminosalicylic acid (5-ASA) and glucocorticoids. Expression of PPARα receptor and PPARα ligands-biosynthetic (NAPE-PLD) and -degrading (FAAH and NAAA) enzymes were analyzed in untreated active and 5-ASA/glucocorticoids/immunomodulators-treated quiescent UC patients compared to healthy human colonic tissue by RT-PCR and immunohistochemical analyses. PPARα, NAAA, NAPE-PLD and FAAH showed differential distributions in the colonic epithelium, lamina propria, smooth muscle and enteric plexus. Gene expression analysis indicated a decrease of PPARα, PPARγ and NAAA, and an increase of FAAH and iNOS in the active colitis mucosa. Immunohistochemical expression in active colitis epithelium confirmed a PPARα decrease, but showed a sharp NAAA increase and a NAPE-PLD decrease, which were partially restored to control levels after treatment. We also characterized the immune cells of the UC mucosa infiltrate. We detected a decreased number of NAAA-positive and an increased number of FAAH-positive immune cells in active UC, which were partially restored to control levels after treatment. NAE-PPARα signaling system is impaired during active UC and 5-ASA/glucocorticoids treatment restored its normal expression. Since 5-ASA actions may work through PPARα and glucocorticoids through NAE-producing/degrading enzymes, the use of PPARα agonists or FAAH/NAAA blockers that increases endogenous PPARα ligands may yield similar therapeutics advantages.