40 resultados para Amaryllidaceae
Resumo:
Described herein is the chemoenzymatic total synthesis of several Amaryllidaceae constituents and their unnatural C-I analogues. A new approach to pancratistatin and related compounds will be discussed along with the completed total synthesis of 7 -deoxypancratistatin and trans-dihydrolycoricidine. Evaluation of all new C-l analogues as cancer cell growth inhibitory agents is described. The enzymatic oxidation of dibromobenzenes by Escherichia coli 1M 109 (pDTG60 1) is presented along with conversion of their metabolites to (-)-conduritol E. Investigation into the steric and functional factors governing the enzymatic dihydroxylation of various benzoates by the same organism is also discussed. The synthetic utility of these metabolites is demonstrated through their conversion to pseudo-sugars, aminocyclitols, and complex bicyclic ring systems. The current work on the total synthesis of some morphine alkaloids is also presented. Highlighted will be the synthesis of several model systems related to the efficient total synthesis of thebaine.
Resumo:
The phylogenetics of Sternbergia (Amaryllidaceae) were studied using DNA sequences of the plastid ndhF and matK genes and nuclear internal transcribed spacer (ITS) ribosomal region for 38, 37 and 32 ingroup and outgroup accessions, respectively. All members of Sternbergia were represented by at least one accession, except S. minoica and S. schubertii, with additional taxa from Narcissus and Pancratium serving as principal outgroups. Sternbergia was resolved and supported as sister to Narcissus and composed of two primary subclades: S. colchiciflora sister to S. vernalis, S. candida and S. clusiana, with this clade in turn sister to S. lutea and its allies in both Bayesian and bootstrap analyses. A clear relationship between the two vernal flowering members of the genus was recovered, supporting the hypothesis of a single origin of vernal flowering in Sternbergia. However, in the S. lutea complex, the DNA markers examined did not offer sufficient resolving power to separate taxa, providing some support for the idea that S. sicula and S. greuteriana are conspecific with S. lutea
Resumo:
Seed dormancy induction and alleviation in the winter-flowering moist temperate woodland species Galanthus nivalis and Narcissus pseudonarcissus are complex and poorly understood. Temperature, light and desiccation were investigated to elucidate their role in the germination ecophysiology of these species. Outdoor and laboratory experiments simulating different seasonal temperatures, seasonal durations, and temperature fluctuations; the presence of light during different seasons; and intermittent drying (during the summer period) over several ‘years’ investigated the importance of these factors in germination. Warm summer-like temperatures (20°C) were necessary for germination at subsequent cooler autumn-like temperatures (greatest at 15°C in G. nivalis and 10°C in N. pseudonarcissus). As the warm temperature duration increased so did germination at subsequent cooler temperatures; further germination occurred in subsequent ‘years’ at cooler temperatures following a second, and also third, warm period. Germination was significantly greater in darkness, particularly in G. nivalis. Dormancy increased with seed maturation period in G. nivalis, because seeds extracted from green capsules germinated more readily than those from yellow. Desiccation increased dormancy in an increasing proportion of N. pseudonarcissus seeds the later they were dried in ‘summer’. Seed viability was only slightly reduced by desiccation in N. pseudonarcissus but was poor and variable in G. nivalis. Shoot formation occurred both at the temperature at which germination was greatest and also if 5°C cooler. In summary, continuous hydration of seeds of both species during warm summer-like temperatures results in the gradual release of seed dormancy; thereafter, darkness and cooler temperatures promote germination. Cold temperatures, increased seed maturity (G. nivalis), and desiccation (N. pseudonarcissus) increase dormancy while light inhibits germination.
Resumo:
• Premise of the study: Microsatellite markers were developed using hoop-petticoat daffodils ( Narcissus sect. Bulbocodii ; Amaryllidaceae) to aid in the taxonomic revision of the section, and further to evaluate their broad applicability for daffodil cultivar identification. • Methods and Results: Three hundred fifty-one primer pairs were developed using a commercial service. Nineteen polymorphic and repeatable markers were developed by screening 67 of these primer pairs. Of these, 11 chosen markers were used to screen 317 samples; the number of alleles per locus ranged from four to 21, and the observed heterozygosity ranged from 0.101 to 0.297. There were null genotypes in some samples for six of the markers. All the microsatellites were transferable to other Narcissus sections. • Conclusions: The results indicate that these new markers have sufficient potential variation to be used for taxonomic revision of the genus and to distinguish many commercial daffodil cultivars.
Resumo:
Plantas da família Amaryllidaceae são amplamente utilizadas na medicina popular no tratamento de diversas doenças. Estudos têm mostrado que a atividade biológica destes vegetais está relacionada à presença de alcalóides tetraisoquinolínicos, embora outros compostos não alcaloídicos também tenham sido encontrados. O gênero Hippeastrum encontra-se distribuído predominantemente na América do Sul sendo que no Estado do Rio Grande do Sul foram relatadas seis espécies nativas: H. glaucescens, H. striatum, H. papilium, H. reginae e H. breviflorum. A espécie estudada neste trabalho, H. breviflorum, foi coletada na região de Aparados da Serra (RS) e separada em dois grupos de acordo com a coloração das flores (vermelhas ou brancas). O material vegetal de ambos os grupos foi separado em bulbos, folhas, raízes, frutos e flores e submetido ao método clássico para extração de alcalóides. Empregando-se cromatografia em camada delgada e cromatografia líquida de alta eficiência dos extratos obtidos verificou-se que os dois grupos vegetais são idênticos qualitativamente para um mesmo extrato testado. Foram isolados dez produtos de H. breviflorum sendo que sete compostos tiveram suas estruturas determinadas através do uso de técnicas de ressonância magnética nuclear, de espectrometria de massas e de cromatografia. As outras três substâncias apresentaram-se em quantidade insuficiente para análise. A partir das folhas de H. breviflorum foram isolados dois compostos identificados como etilcafeato e p-hidroxibenzaldeído, nos frutos foram encontrados os flavonóides rutina e quercetina e nos bulbos foram isolados os alcalóides licorina, HB1 e HB5, estes dois últimos inéditos denominados de breviflorina A e beviflorina B. Dentre os compostos e extratos testados quanto à atividade antioxidante frente a DPPH, etilcafeato, quercetina e rutina foram os produtos mais ativos. O composto etilcafeato apresentou inibição do vírus da Herpes equivalente ao controle positivo aciclovir.
Resumo:
In this work particular attention was given to the study of secondary metabolites produced by some plants belonging to the Amaryllidaceae family, in the specific case isoquinoline alkaloids. At the first instance were characterized both qualitatively and quantitatively three different plants belonging to Amaryllidaceae family, such as: Crinum angustum Steud., Pancratium illyricum L., and Leucojum nicaeense Ard. The alkaloids extracts obtained were separately tested against enzymes involved in specific diseases or liable in multifactorial pathologies, like: MMPs, AChE,and PPO. From leaves extract of P.illyricum was isolated a new compound, 11α-hydroxy-O-methylleucotamine, with important role in AChE inbition. Considering the protection role against external bodies carried out by these metabolites in plant, extracts were also assayed against ATCC microorganisms and clinical isolates. Plants with promising pharmacological activities have been the basis for development of in vitro plant models.
Resumo:
Von Fr. Kränzlin
Resumo:
[von Roland Anheisser]
Resumo:
La familia Amaryllidaceae se encuentra distribuida en diversas regiones de Chile y Sudamérica. De los 11 géneros reconocidos por Ravenna, al menos tres de ellos presentan un reconocido potencial ornamental: Miltinea Ravenna, endémico de Chile y conformado por la especie Miltinea maulensis (Ravenna) Ravenna, Phycella Lindley, endémico de Chile, conformado por cuatro especies y distribuido desde el valle de Elqui hasta la altura de la región de Arauco y Rhodophiala C. Presl. presente en el sur de Brasil, Uruguay, Bolivia, Argentina y Chile conformado por un número aproximado de 40 especies. Actualmente, la información taxonómica tradicional para diferenciar los géneros presentes en Chile es insuficiente. Es por ello que se utilizó la citotaxonomía como una herramienta y fuente de evidencia taxonómica. El objetivo de esta investigación fue realizar un estudio comparativo de los cariotipos en representantes de tres géneros de Amaryllidaceae que crecen en Chile con el fin de ayudar a clarificar la posición taxonómica de ellos. Las especies analizadas fueron: Miltinea maulensis (Ravenna) Ravenna, Phycella australis Ravenna, Rhodophiala araucana (Phil.) Traub, Rhodophiala montana (Phil.) Traub, y Rhodophiala pratensis (Poepp.) Traub. Los resultados obtenidos indicaron que Miltinea maulensis y Phycella australis presentan características cariológicas muy similares, tanto en el número cromosómico, fórmula cariotípica e índices cromosómicos. Estas características permitirían considerar Miltinea como un sinónimo de Phycella. Por último, las tres especies de Rhodophiala analizadas comparten características citológicas muy similares, como por ejemplo, la presencia de una región NOR en el brazo largo del cromosoma 7, idéntico número cromosómico e índices de asimetría de los cariotipos casi iguales.
Resumo:
Speciation can be understood as a continuum occurring at different levels, from population to species. The recent molecular revolution in population genetics has opened a pathway towards understanding species evolution. At the same time, speciation patterns can be better explained by incorporating a geographic context, through the use of geographic information systems (GIS). Phaedranassa (Amaryllidaceae) is a genus restricted to one of the world’s most biodiverse hotspots, the Northern Andes. I studied seven Phaedranassa species from Ecuador. Six of these species are endemic to the country. The topographic complexity of the Andes, which creates local microhabitats ranging from moist slopes to dry valleys, might explain the patterns of Phaedranassa species differentiation. With a Bayesian individual assignment approach, I assessed the genetic structure of the genus throughout Ecuador using twelve microsatellite loci. I also used bioclimatic variables and species geographic coordinates under a Maximum Entropy algorithm to generate distribution models of the species. My results show that Phaedranassa species are genetically well-differentiated. Furthermore, with the exception of two species, all Phaedranassa showed non-overlapping distributions. Phaedranassa viridiflora and P. glauciflora were the only species in which the model predicted a broad species distribution, but genetic evidence indicates that these findings are likely an artifact of species delimitation issues. Both genetic differentiation and nonoverlapping geographic distribution suggest that allopatric divergence could be the general model of genetic differentiation. Evidence of sympatric speciation was found in two geographically and genetically distinct groups of P. viridiflora. Additionally, I report the first register of natural hybridization for the genus. The findings of this research show that the genetic differentiation of species in an intricate landscape as the Andes does not necessarily show a unique trend. Although allopatric speciation is the most common form of speciation, I found evidence of sympatric speciation and hybridization. These results show that the processes of speciation in the Andes have followed several pathways. The mixture of these processes contributes to the high biodiversity of the region.
Resumo:
Although only recently described, Colletotrichum boninense is well established in literature as an anthracnose pathogen or endophyte of a diverse range of host plants worldwide. It is especially prominent on members of Amaryllidaceae, Orchidaceae, Proteaceae and Solanaceae. Reports from literature and preliminary studies using ITS sequence data indicated that C. boninense represents a species complex. A multilocus molecular phylogenetic analysis (ITS, ACT, TUB2, CHS-1, GAPDH, HIS3, CAL) of 86 strains previously identified as C. boninense and other related strains revealed 18 clades. These clades are recognised here as separate species, including C. boninense s. str., C. hippeastri, C. karstii and 12 previously undescribed species, C. annellatum, C. beeveri, C. brassicicola, C. brasiliense, C. colombiense, C. constrictum, C. cymbidiicola, C. dacrycarpi, C. novae-zelandiae, C. oncidii, C. parsonsiae and C. torulosum. Seven of the new species are only known from New Zealand, perhaps reflecting a sampling bias. The new combination C. phyllanthi was made, and C. dracaenae Petch was epitypified and the name replaced with C. petchii. Typical for species of the C. boninense species complex are the conidiogenous cells with rather prominent periclinal thickening that also sometimes extend to form a new conidiogenous locus or annellations as well as conidia that have a prominent basal scar. Many species in the C. boninense complex form teleomorphs in culture. TAXONOMIC NOVELTIES: New combination - Colletotrichum phyllanthi (H. Surendranath Pai) Damm, P.F. Cannon & Crous. Name replacement - C. petchii Damm, P.F. Cannon & Crous. New species - C. annellatum Damm, P.F. Cannon & Crous, C. beeveri Damm, P.F. Cannon, Crous, P.R. Johnst. & B. Weir, C. brassicicola Damm, P.F. Cannon & Crous, C. brasiliense Damm, P.F. Cannon, Crous & Massola, C. colombiense Damm, P.F. Cannon, Crous, C. constrictum Damm, P.F. Cannon, Crous, P.R. Johnst. & B. Weir, C. cymbidiicola Damm, P.F. Cannon, Crous, P.R. Johnst. & B. Weir, C. dacrycarpi Damm, P.F. Cannon, Crous, P.R. Johnst. & B. Weir, C. novae-zelandiae Damm, P.F. Cannon, Crous, P.R. Johnst. & B. Weir, C. oncidii Damm, P.F. Cannon & Crous, C. parsonsiae Damm, P.F. Cannon, Crous, P.R. Johnst. & B. Weir, C. torulosum Damm, P.F. Cannon, Crous, P.R. Johnst. & B. Weir. Typifications: Epitypifications - C. dracaenae Petch.
Resumo:
Novel species of Cercospora and Pseudocercospora are described from Australian native plant species. These taxa are Cercospora ischaemi sp. nov. on Ischaemum australe (Poaceae); Pseudocercospora airliensis sp. nov. on Polyalthia nitidissima (Annonaceae); Pseudocercospora proiphydis sp. nov. on Proiphys amboinensis (Amaryllidaceae); and Pseudocercospora jagerae sp. nov. on Jagera pseudorhus var. pseudorhus (Sapindaceae). These species were characterised by morphology and an analysis of partial nucleotide sequence data for the three gene loci, ITS, LSU and EF-1α. Recent divergence of closely related Australian species of Pseudocercospora on native plants is proposed.
Resumo:
New records of vascular plants from Sierra del Rincón Biosphere Reserve and surroundings (Spain, Madrid province) are provided. It is noteworthy the presence of atlantic flora in this continental area and the different shrubby communities in different sectors with different litology: in areas with gneiss they are dominated by leguminous genisteae; where it is schistous, shale or quartzite they are heathlands.
Resumo:
Described herein is the chemoenzymatic synthesis of several different types of unnatural analogues of Amaryllidaceae constituents. Development and refinement of existing and design and execution of new approaches towards the synthesis of C-1 analogues of pancratistatin and A-ring heterocyclic analogues of narciclasine are discussed. Evaluation of the new analogues as cancer growth inhibitory agents is also described
Resumo:
This thesis describes work towards the total synthesis of a 7-aza analogue of the Amaryllidaceae alkaloid narciclasine, a potent anticancer compound which suffers from a poor solubility profile. A key strategy in the formation of the C-ring is the biotransformation of bromobenzene by E.coli JM109. The densely substituted heterocyclic A-ring is obtained by sequential directed ortho-metalation and the fragment union accomplished with an amide coupling and subsequent intramolecular Heck reaction.