52 resultados para Amaranth
Resumo:
Snacks made by extrusion cooking of pure amaranth flour or mixtures of 80 per cent amaranth flour and 20 per centcorn grits or chickpea flour were developed to replace the traditional commercial ones with improved nutritional and functional quality. Pure amaranth snacks and the blended ones were flavored with salty and sweet flavors and evaluated for acceptability using a 9-point hedonic scale. The good acceptance observed for either salty or sweet flavored snacks indicated that they have characteristics to compete with similar commercial products. Acceptability of salty snacks increased with storage time at room temperature in BOPP (polypropylene bi-guided) packs whereas slightly decreased for the sweet ones. This type of storage proved to be very efficient for the conservation of the salty product and also suitable for the sweet ones
Resumo:
ABSTRACT The recent introduction of Palmer amaranth (Amaranthus palmeri) in Brazilian agricultural areas may promote several changes on weed management, especially in no-till systems and in glyphosate-resistant crops, since glyphosate-resistant biotypes of A. palmerihave been frequently selected in other countries. Therefore, this research was developed in order to evaluate the glyphosate susceptibility of a Palmer amaranth biotype recently identified in the State of Mato Grosso, Brazil. For this purpose, glyphosate susceptibility of three Amaranthusbiotypes was compared: A.hybridus var. patulus, collected in the State of Rio Grande do Sul - Brazil; A.hybridus var. patulus, collected in the State of São Paulo - Brazil; and A.palmeri, collected in the State of Mato Grosso - Brazil. Dose-response curves were generated for all biotypes, considering eight rates of glyphosate and six replicates. All the experiments were repeated twice. Both A.hybridus biotypes were satisfactorily controlled by glyphosate, demanding rates equal to or lower than 541.15 g a.e. ha-1 for 80% control (LD80). The A.palmeri biotype was not controlled by glyphosate in any of the assessments and required rates greater than 4,500 g a.e. ha-1 to reach LD80, which are economically and environmentally unacceptable. Comparison of the Brazilian A.palmeri biotype to the A. hybridus biotypes, as well as, to the results available in scientific international literature, led to the conclusion that the Brazilian Palmer amaranth biotype is resistant to glyphosate.
Resumo:
Calcium bioavailability of raw and extruded amaranth grains was assessed in a biological assay in rats. Rats were fed for 28 days on diets in which raw or extruded amaranth was the only calcium source, compared to a control diet with calcium carbonate. Calcium and phosphorous levels were determined in the rats' serum during the experimental period and in the bones at the end of the experiment. Amaranth extrusion increased its calcium bioavailability, assessed by tibia and femur weights and calcium and phosphorous content of the bones. Apparent calcium absorption index, the force needed to break the bones and bone densitometry of both extruded and raw amaranth were the same, though different from the control group. The results show that amaranth can be a complementary source of dietary calcium the bioavailability of which is favorably modified by the extrusion process.
Resumo:
We evaluated the effects of defatted amaranth (Amaranthus caudatus L.) snacks on plasma lipids in moderate hypercholesterolemic patients. Twenty-two subjects [30-65 years old), 11 males, with total cholesterol (TC) > 240 mg.dL-1, low-density cholesterol (LDL-c) 160-190 mg.dL-1 and plasma triglycerides (TG) < 400 mg.dL-1] were randomized in a double blind clinical trial to receive an amaranth snack (50 g/day) or equivalent corn snack (placebo) for 2 months. There were no differences between amaranth and placebo on TC and LDL-c, and TG respectively: -8.4 and -5.7% (p = 0.17); -12.3 and -9.7% (p = 0.41) and -0.6 and -7.3% (p = 0.47). However, amaranth snacks significantly reduced high-density cholesterol (HDL-c): -15.2 vs. -4% (p = 0.03). In conclusion, the intake of 50 g of extruded amaranth daily during 60 days did not significantly reduce LDL-c in moderate hypercholesterolemic subjects; furthermore there was a significant reduction in HDL-c. Studies with greater number of subjects and greater quantity of this food are necessary to test the effects of amaranth on lipid metabolism in humans.
Effect of incorporation of amaranth on the physical properties and nutritional value of cheese bread
Resumo:
At the present celiac disease has no known cure, and its only treatment is a strict lifelong adherence to a gluten-free diet. Cheese bread is a traditional Brazilian product and a safe option for celiacs. However, like other gluten-free breads, it has inherent low levels of fibers and minerals. The objective of this study was to evaluate the effect of incorporation of whole amaranth flour on the physical properties and nutritional value of cheese bread. Amaranth flour was incorporated at 10, 15, and 20% proportions in different formulations. The increasing amaranth levels darkened the product, reduced specific volume, and increased compression force. Ten percent amaranth-content cheese breads exhibited slight differences in physical properties compared with the controls. These results demonstrated the possibility of incorporating 10% of whole amaranth flour in the formulation of cheese bread resulting in a product with higher dietary fiber and iron contents and the same level of acceptance as that of the conventional formulation. The aim of this approach is to increase the availability of gluten-free bakery products with added nutritional value contributing to increase the variety of the diet of celiac patients.
Resumo:
This study evaluated the fatty acid quantification, proximate and amino acid compositions, antioxidant activity, total phenolic compounds, vitamin E, and mineral contents of new amaranth (BRS Alegria) and quinoa (BRS Piabiru) cultivars which were produced in order to adapt these pseudocereals to the climatic conditions of central-western Brazil. They showed superior levels of protein and total lipids in comparison to their native counterparts. The lipid profile of the amaranth BRS Alegria was revealed to be better than those of other native cultivars. Quinoa BRS Piabiru presented a higher antioxidant capacity and phenolic content than the studied amaranth cultivar, but lower contents of tocopherols. All of the obtained results confirm that these new grains possess an overall amount of nutritional compounds that is better than those reported for many native counterparts of the studied samples. The employed analytical methods in this work contributed to a better understanding of the quinoa BRS Piabiru and amaranth BRS Alegria chemical compositions. Therefore, the diversity and quantity of all of the studied compounds in the samples denote the considerable importance of these grains for food science research area.
Resumo:
The effect of different process -defatting, protein concentration, thermal treatment, hydrolysis with Alcalase and in vitro digestion- on the antioxidant capacity of amaranth seeds was studied. The antioxidant capacity of the products was determined in methanolic and aqueous extracts and varied from 1.00 to 21.22 and 4.97 to 369.18 µ mol TE/g sample for DPPH and ORAC assays, respectively. The combination of protein concentration and hydrolysis with Alcalase led to products with higher antioxidant activity. However, after in vitro digestion, protein concentrate and its hydrolysate showed similar antioxidant capacity. A high correlation was observed between the antioxidant capacity and the total phenolic content for methanolic extracts, with r² values ranging from 0.6133 to 0.9352.
Resumo:
The objective of this study was to determine the effect of adding Amaranth leaf powder on the nutrient content and consumer acceptability of extruded provitamin A-biofortified (PVA) maize snacks. Flours of four varieties of PVA maize were composited with Amaranth leaf powder at 0, 1 and 3% (w/w) substitution of, respectively, and extruded into snacks. The ash content of the snacks increased from 0.53 g/100 g-0.58 g/100 g to 0.650 g/100g-89 g/100 g and protein content increased from 9.12 g/100 g-10.94 g/100 g when Amaranth was increased from 0% to 3%. Similarly, lysine content increased from 0.10 g/100 g to 0.17 g/100 g, whilst methionine increased from 0.14 g/100 g to 0.19 g/100 g. The provitamin A content of the snacks ranged from 1.29 µg/g to 1.40 µg/g at 0% Amaranth and 1.54 µg/g to 1.78 µg/g at 3% Amaranth. The acceptability of the snacks decreased with increasing Amaranth concentration, only a very small proportion (2-8%) of the panel liked the snacks extremely. PVA maize with added Amaranth leaf powder has a potential for use in nutritious and healthy extruded snacks, but the consumer acceptability of the snacks should be improved.
Resumo:
The aim of this study was to compare some of the properties of native and extruded amaranth flour obtained under mild and severe extrusion conditions. The chemical composition of the flours was similar. Flours obtained by both extrusion processes presented high solubility in water, low values of L* (luminosity) and an absence of endothermic peak on the DSC method. Water absorption, retrogradation tendency, final viscosity and the viscous behavior by rheology analysis were also studied. The results indicate that extruded flours have a good potential as an ingredient for food exposed to heat treatment at a high temperature and mechanical shear, for use in instant meal products. On the other hand, original flour properties are comparable to those of amaranth starch, which exhibits similarly high quality paste stability, low solubility in water, and elastic behavior, and could be used as a substitute for raw flour in a range of food formulas. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Amaranth bars enriched with fructans: acceptability and nutritional value. There is an increasing appeal for convenience foods with potential health benefits to the consumer. Raw materials with high nutritional value and functional properties must be used on the development of these food products. Amaranth is a gluten-free grain with high nutrition value. Inulin and oligofructose are prebiotic ingredients presenting effects as the enhancement of calcium absorption. Amaranth bars enriched with inulin and oligofructose were developed in the flavors: banana, Brazilian nuts and dried grape, coconut, peach, strawberry and wall nut. The proximate composition were determined and compared to commercial cereal bars, available in traditional (n=59), light (n=60), diet (n=8), with soy (n=10) and quinoa (n=1) categories. Amaranth bars present mean global acceptance values from 6.3 to 7.6 on a 9-point hedonic scale, nutritional advantages as compared to commercial cereal bars (caloric reduction and higher levels of dietary fiber). Although amaranth is an unknown raw material in Brazil, it shows good potential to be used in the manufacturing of ready-to-eat products. As they are gluten free, these amaranth bars are also an alternative product for celiacs, also contributing to the enhancement of calcium absorption, a problem frequently observed in these patients.
Resumo:
This study describes amaranth`s protein cholesterol-lowering effect and investigates its mechanisms hypercholesterolaemia was induced in male hamsters through diet rich in casein (300 g/kg diet) containing regular levels of cholesterol (0.5 kg/g) fed during 3 weeks. Animals were divided into three groups and fed ad libitum diets for 4 weeks containing as the sole source of protein: casein (control), amaranth protein isolate or, casein + amaranth protein isolate. Plasma concentrations of cholesterol and triacylglycerols were measured at four different points: at the beginning of the study. after hypercholesterolaemia was induced, in the first week and then at the end of the experimental diet period. The reduction of the total plasma cholesterol concentration at the end of experimental period for animals fed on diets containing amaranth protein isolate pure and with casein were 27% (P < 0.05) and 48% (P < 0.05). respectively, being the non-HDL fractions the most affected. Digestibility of protein as well as excretion of cholesterol and bile acid, were investigated as the possible mechanisms for this significant hypocholesterolaemic effect. Cholesterol excretion was related to the hypocholesterolaemia but could not explain all the observed reduction. Our findings suggest that amaranth protein has a metabolic effect on endogenous cholesterol metabolism. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The sum of wheat flour and corn starch was replaced by 10, 20, or 30% whole amaranth flour in both conventional (C) and reduced fat (RF) pound cakes. and the effects on physical and sensory properties of the cakes were investigated. RF presented 33% fat reduction. The increasing amaranth levels darkened crust and crumb of cakes, which decreased color acceptability. Fresh amaranth-containing cakes had similar texture characteristics to (he controls, evaluated both instrumentally and sensorially. Sensory evaluation revealed that replacement by 30% amaranth flour decreased C cakes overall acceptability scores, clue to its lower specific volume and darker color. Amaranth flour levels had no significant effect on overall acceptability of RF cakes. Hence, the sum of wheat flour and corn starch could be successfully replaced by up to 20% amaranth flour in C and up to 30% in RF pound cakes without negatively affecting sensory quality in fresh cakes. Moisture losses for all the cakes were similar, approximate to 1% per day during storage. After six days of storage, both C and RF amaranth-containing cakes had higher hardness and chewiness values than control cakes. Further experiments involving sensory evaluation during storage are necessary to determine the exact limit of amaranth flour replacement.
Resumo:
Amaranth has attracted a great deal of interest in recent decades due to its valuable nutritional, functional, and agricultural characteristics. Amaranth seeds can be cooked, popped, roasted, flaked, or extruded for consumption. This study compared the in vitro starch digestibility of processed amaranth seeds to that of white bread. Raw seeds yielded rapidly digestible starch content (RDS) of 30.7% db and predicted glycemic index (pGI) of 87.2, the lowest among the studied products. Cooked, extruded, and popped amaranth seeds had starch digestibility similar to that of white bread (92.4, 91.2, and 101.3, respectively), while flaked and roasted seeds generated a slightly increased glycemic response (106.0 and 105.8, respectively). Cooking and extrusion did not alter the RDS contents of the seeds. No significant differences were observed among popped, flaked, and roasted RDS contents (38.0%,46.3%, and 42.9%, respectively), which were all lower than RDS content of bread (51.1%). Amaranth seed is a high glycemic food most likely because of its small starch granule size, low resistant starch content (< 1%), and tendency to completely lose its crystalline and granular starch structure during those heat treatments.
Resumo:
Effect of processing on the antioxidant activity of amaranth grain. Amaranth has attracted increasing interest over recent decades because of its nutritional, functional and agricultural characteristics. Amaranth grain can be cooked, popped, toasted, extruded or milled for consumption. This study investigated the effect of these processes on the antioxidant activity of amaranth grain. Total phenolic content and in vitro antioxidant activity were determined according to two methods: inhibition, of lipid oxidation using the beta-carotene/linoleic acid system and the antioxidant activity index using the Rancimat (R) apparatus. The processing reduced the mean total phenolics content in amaranth grain from 31.7 to 22.0 mg of gallic acid equivalent/g of dry residue. It was observed that the ethanol extract from toasted grain was the only one that presented a lower antioxidant activity index compared with the raw grain (1.3 versus 1.7). The extrusion, toasting and popping processes did not change the capacity to inhibit amaranth lipid oxidation (55%). However, cooking increased the inhibition of lipid oxidation (79%), perhaps because of the longer time at high temperatures in this process (100 degrees C/10 min). The most common methods for processing amaranth grain caused reductions in the total phenolics content, although the antioxidant activity of popped and extruded grain, evaluated by the two methods, was similar to that of the raw grain. Both raw and processed amaranth grain presents antioxidant potential. Polyphenols, anthocyanins, flavonoids, tocopherols, vitamin C levels and Maillard reaction products may be related to the antioxidant activity of this grain.
Resumo:
The optimal formulation for the preparation of amaranth flour films plasticized with glycerol and sorbitol was obtained by a multi-response analysis. The optimization aimed to achieve films with higher resistance to break, moderate elongation and lower solubility in water. The influence of plasticizer concentration (Cg, glycerol or Cs, sorbitol) and process temperature (Tp) on the mechanical properties and solubility of the amaranth flour films was initially studied by response surface methodology (RSM). The optimized conditions obtained were Cg 20.02 g glycerol/100 g flour and Tp 75 degrees C, and Cs 29.6 g sorbitol/100 g flour and Tp 75 degrees C. Characterization of the films prepared with these formulations revealed that the optimization methodology employed in this work was satisfactory. Sorbitol was the most suitable plasticizer. It furnished amaranth flour films that were more resistant to break and less permeable to oxygen, due to its greater miscibility with the biopolymers present in the flour and its lower affinity for water. (C) 2011 Elsevier Ltd. All rights reserved.