965 resultados para Alveolar bony crest
Resumo:
Aim: To describe the adaptation of the Edentulous Ridge Expansion (E.R.E.) technique for implant removal. Material and Methods: The E.R.E. technique for the removal of failed implants is described in detail. A clinical case is also reported. In a patient carrying a full arch removable prosthesis in the upper jaw, sustained by two bars, two out of five implants were found to be fractured. Bucco-lingual partial-thickness flaps were used to access the fractured implants. The implants were subsequently removed applying the E.R.E. technique. Two recipient sites were prepared in the same position, using bone expanders, and two new implants were installed. Results: After 4 months of healing, the implants were integrated and a new bar was fabricated, and the old prosthesis readapted. Conclusion: The ERE technique may be successfully applied for the removal of failed implants, and the immediate or delayed reinstallation of new implants. © 2012 John Wiley & Sons A/S.
Resumo:
Aim: To evaluate the influence of deproteinized bovine bone mineral in conjunction with a collagen membrane, at implants installed into sockets in a lingual position immediately after tooth extraction, and presenting initial horizontal residual buccal defects <2 mm. Material and methods: The pulp tissue of the mesial roots of 4P4 was removed in six Labrador dogs, and the root canals were filled with gutta-percha and cement. Flaps were elevated, and the buccal and lingual alveolar bony plates were exposed. The premolars were hemi-sectioned, and the distal roots were removed. Implants were installed in a lingual position and with the margin flush with the buccal bony crest. After installation, defects resulted at about 1.7 mm in width at the buccal aspects, both at the test and control sites. Only in the left site (test), deproteinized bovine bone mineral (DBBM) particles were placed into the defect concomitantly with the placement of a collagen membrane. A non-submerged healing was allowed. Results: After 3 months of healing, one implant was found not integrated and was excluded from the analysis together with the contralateral control implant. All remaining implants were integrated into mature bone. The bony crest was located at the same level of the implant shoulder, both at the test and control sites. At the buccal aspect, the most coronal bone-to-implant contact was located at a similar distance from the implant margin at the test (1.7 ± 1.0 mm) and control (1.6 ± 0.8 mm) sites, respectively. Only small residual DBBM particles were found at the test sites. Conclusion: The placement of an implant in a lingual position into a socket immediately after tooth extraction may favor a low exposure of the buccal implant surface. The use of DBBM particles, concomitantly with a collagen membrane, did not additionally improve the outcome obtained at the control sites. © 2011 John Wiley & Sons A/S.
Resumo:
Objective: To investigate the influence of the presence or absence of keratinized mucosa on the alveolar bony crest level as it relates to different buccal marginal bone thicknesses. Material and methods: In six beagle dogs, the mandibular premolars and first molars were extracted bilaterally. In the right side of the mandible (test), flaps were elevated, and the buccal as well as part of the lingual masticatory mucosa was removed. The flap was released coronally to allow a primary wound closure. In the left side, the wounds were left unsutured with the keratinized mucosa remaining (control). After 3 months of healing, a complete absence of keratinized mucosa was found at the test sites. Two recipient sites were prepared at each side of the mandible, one in the premolar and one in the molar region. A buccal bony ridge width of approximately 1 and 2 mm was obtained at the premolar and molar region, respectively. Implants were installed with the shoulder flush with the buccal alveolar bony crest, and abutments were connected to allow a nonsubmerged healing. At least 2 mm of keratinized mucosa was surrounding the control sites, while at the test sites, the implants were bordered by alveolar mucosa. After 3 months, the animals were euthanized and ground sections obtained. Results: A higher vertical bony crest resorption was observed at the test compared with the control sites both at the premolar and molar regions, the differences being statistically significant. The top of the peri-implant mucosa was located more coronally at the control compared with the test sites. The horizontal resorption measured 1 mm below the implant shoulder was similar at the test and control sites. Only limited differences were found between premolar and molar sites, with the exclusion of the horizontal resorption that was higher at the test compared with the control sites. Conclusions: A higher alveolar buccal bony crest resorption and a more apical soft tissue marginal position should be expected, when implants are surrounded with thin alveolar mucosa at the time of installation, independently of the thickness of the buccal bony crest. © 2013 John Wiley & Sons A/S.
Resumo:
Aim: To evaluate the influence of the width of the buccal bony wall on hard and soft tissue dimensions following implant installation. Material and methods: Mandibular premolars and first molars of six Labrador dogs were extracted bilaterally. After 3 months of healing, two recipient sites, one on each side of the mandible, were prepared in such a way as to obtain a buccal bony ridge width of about 2 mm in the right (control) and 1 mm in the left sides (test), respectively. Implants were installed with the coronal margin flush with the buccal alveolar bony crest. Abutments were placed and the flaps were sutured to allow a non-submerged healing. After 3 months, the animals were euthanized and ground sections obtained. Results: All implants were completely osseointegrated. In respect to the coronal rough margin of the implant, the most coronal bone-to-implant contact was apically located 1.04 ± 0.91 and 0.94 ± 0.87 mm at the test and control sites, respectively, whereas the top of the bony crest was located 0.30 ± 0.40 mm at the test and 0.57 ± 0.49 mm at the control sites. No statistically significant differences were found. A larger horizontal bone resorption, however, evaluated 1 mm apically to the rough margin, was found at the control (1.1 ± 0.7 mm) compared to the test (0.3 ± 0.3 mm) sites, the difference being statistically significant. A thin peri-implant mucosa (2.4-2.6 mm) was found at implant installation while, after 3 months of healing, a biological width of 3.90-4.40 mm was observed with no statistically significant differences between control and test sites. Conclusions: A width of the buccal bony wall of 1or 2 mm at implant sites yielded similar results after 3 months of healing in relation of hard tissue and soft tissues dimensions after implant installation. © 2012 John Wiley & Sons A/S.
Resumo:
Objective: To study bony and soft tissue changes at implants installed in alveolar bony ridges of different widths.Material and methods: In 6 Labrador dogs, the mandibular premolars and first molars were extracted, and a buccal defect was created in the left side at the third and fourth premolars by removing the buccal bone and the inter-radicular and interdental septa. Three months after tooth extraction, full-thickness mucoperiosteal flaps were elevated, and implants were installed, two at the reduced (test) and two at the regular-sized ridges (control). Narrow or wide abutments were affixed to the implants. After 3 months, biopsies were harvested, and ground sections prepared for histological evaluation.Results: A higher vertical buccal bony crest resorption was found at the test (1.5 +/- 0.7 mm and 1.0 +/- 0.7 mm) compared to the control implants (1.0 +/- 0.5 mm and 0.7 +/- 0.4 mm), for both wide and narrow abutment sites. A higher horizontal alveolar resorption was identified at the control compared to the test implants. The difference was significant for narrow abutment sites. The peri-implant mucosa was more coronally positioned at the narrow abutment, in the test sites, while for the control sites, the mucosal adaptation was more coronal at the wide abutment sites. These differences, however, did not reach statistical significance.Conclusions: Implants installed in regular-sized alveolar ridges had a higher horizontal, but a lower vertical buccal bony crest resorption compared to implants installed in reduced alveolar ridges. Narrow abutments in reduced ridges as well as wide abutments in regular-sized ridges yielded less soft tissue recession compared to their counterparts.
Resumo:
Purpose: The aim of this study was to evaluate by means of digital radiography the behavior of the alveolar bone crest in external hexagon implants following the use of 2 different types of abutments, one for conventional cemented prosthesis and one for modified cemented prosthesis.Methods: Ten external hexagon implants (platform 4.1) were placed in 5 patients. Initial instrumentation was carried out to obtain primary stability of the temporary prostheses under immediate loading. Each patient received both abutments for conventional and modified cemented prosthesis. Standardized digital periapical radiographies were performed at times T0 (immediately after implant placement) and T1 (4 months after implant placement). A straight line was initially established from the implant platform to the distal and mesial periimplantar marginal bone tissue (immediately in contact with the implant) and measured by digital radiography, using Sidexis version 2.3 (Sirona Dental Systems GmbH, Bensheim, Germany) software. The data were submitted to paired-samples t-test analysis.Results: There was no significant difference between the conventional and modified cemented prosthesis. In both cases, t-test results were within the null hypothesis level.Conclusion: The abutment for the modified cemented prosthesis resulted in no significant radiographic difference of alveolar bone crest height, when compared with the conventional cemented prostheses.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Aim To evaluate the soft tissue and the dimensional changes of the alveolar bony crest at sites where deproteinized bovine bone mineral (DBBM) particles, concomitantly with the placement of a collagen membrane, were used at implants installed into sockets immediately after tooth extraction. Material and methods The pulp tissue of the mesial roots of 3P3 was removed in six Labrador dogs, and the root canals were filled. Flaps were elevated bilaterally, the premolars hemi-sectioned, and the distal roots removed. Recipient sites were prepared in the distal alveolus, and implants were placed. At the test sites, DBBM particles were placed in the residual marginal defects concomitantly with the placement of a collagen membrane. No treatment augmentation was performed at the control sites. A non-submerged healing was allowed. Impressions were obtained at baseline and at the time of sacrifice performed 4 months after surgery. The cast models obtained were analyzed using an optical system to evaluate dimensional variations. Block sections of the implant sites were obtained for histological processing and soft tissue assessments. Results After 4 months of healing, no differences in soft tissue dimensions were found between the test and control sites based on the histological assessments. The location of the soft tissue at the buccal aspect was, however, more coronal at the test compared with the control sites (1.8 +/- 0.8 and 0.9 +/- 0.8 mm, respectively). At the three-dimensional evaluation, the margin of the soft tissues at the buccal aspect appeared to be located more apically and lingually. The vertical dislocation was 1 +/- 0.6 and 2.7 +/- 0.5 mm at the test and control sites, respectively. The area of the buccal shrinkage of the alveolar crest was significantly smaller at the test sites (5.9 +/- 2.4 mm2) compared with the control sites (11.5 +/- 1.7 mm2). Conclusion The use of DBBM particles concomitantly with the application of a collagen membrane used at implants placed into sockets immediately after tooth extraction contributed to the preservation of the alveolar process.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
ObjectiveTo compare the sequential healing at immediately loaded implants installed in a healed alveolar bony ridge or immediately after tooth extraction.Material and methodsIn the mandible of 12 dogs, the second premolars were extracted. After 3months, the mesial roots of the third premolars were endodontically treated and the distal roots extracted. Implants were placed immediately into the extraction sockets (test) and in the second premolar region (control). Crowns were applied at the second and third maxillary premolars, and healing abutments of appropriate length were applied at both implants placed in the mandible and adapted to allow occlusal contacts with the crowns in the maxilla. The time of surgery and time of sacrifices were planned in such a way to obtain biopsies representing the healing after 1 and 2weeks and 1 and 3months. Ground sections were prepared for histological analyses.ResultsAt the control sites, a resorption of the buccal bone of 1mm was found after 1week and remained stable thereafter. At the test sites, the resorption was 0.4mm at 1-week period and further loss was observed after 1month. The height of the peri-implant soft tissue was 3.8mm both at test and control sites. Higher values of mineralized bone-to-implant contact and bone density were seen at the controls compared with the test sites. The differences, however, were not statistically significant.ConclusionsDifferent patterns of sequential early healing were found at implants installed in healed alveolar bone or in alveolar sockets immediately after tooth extractions. However, three months after implant installation, no statistically significant differences were found for the hard- and soft-tissue dimensions.
Resumo:
To compare peri-implant soft- and hard-tissue integration at implants installed juxta- or sub-crestally. Furthermore, differences in the hard and soft peri-implant tissue dimensions at sites prepared with drills or sonic instruments were to be evaluated. Three months after tooth extraction in six dogs, recipient sites were prepared in both sides of the mandible using conventional drills or a sonic device (Sonosurgery(®) ). Two implants with a 1.7-mm high-polished neck were installed, one with the rough/smooth surface interface placed at the level of the buccal bony crest (control) and the second placed 1.3 mm deeper (test). After 8 weeks of non-submerged healing, biopsies were harvested and ground sections prepared for histological evaluation. The buccal distances between the abutment/fixture junction (AF) and the most coronal level of osseointegration (B) were 1.6 ± 0.6 and 2.4 ± 0.4 mm; between AF and the top of the bony crest (C), they were 1.4 ± 0.4 and 2.2 ± 0.2 mm at the test and control sites, respectively. The top of the peri-implant mucosa (PM) was located more coronally at the test (1.2 ± 0.6 mm) compared to the control sites (0.6 ± 0.5 mm). However, when the original position of the bony crest was taken into account, a higher bone loss and a more apical position of the peri-implant mucosa resulted at the test sites. The placement of implants into a sub-crestal location resulted in a higher vertical buccal bone resorption and a more apical position of the peri-implant mucosa in relation to the level of the bony crest at implant installation. Moreover, peri-implant hard-tissue dimensions were similar at sites prepared with either drills or Sonosurgery(®) .
Resumo:
Aim To evaluate the influence of magnesium-enriched hydroxyapatite (MHA) (SintLife (R)) on bone contour preservation and osseointegration at implants placed immediately into extraction sockets. Material and methods In the mandibular pre-molar region, implants were installed immediately into extraction sockets of six Labrador dogs. MHA was placed at test sites, while the control sites did not receive augmentation materials. Implants were intended to heal in a submerged mode. After 4 months of healing, the animals were sacrificed, and ground sections were obtained for histomorphometric evaluation. Results After 4 months of healing, one control implant was not integrated leaving n=5 test and control implants for evaluation. Both at the test and the control sites, bone resorption occurred. While the most coronal bone-to-implant contact was similar between test and control sites, the alveolar bony crest outline was maintained to a higher degree at the buccal aspect of the test sites (loss: 0.7 mm) compared with the control sites (loss: 1.2 mm), even though this difference did not reach statistical significance. Conclusions The use of MHA to fill the defect around implants placed into the alveolus immediately after tooth extraction did not contribute significantly to the maintenance of the contours of the buccal alveolar bone crest. To cite this article:Caneva M, Botticelli D, Stellini E, Souza SLS, Salata LA, Lang NP. Magnesium-enriched hydroxyapatite at immediate implants: a histomorphometric study in dogs.Clin. Oral Impl. Res. 22, 2011; 512-517doi: 10.1111/j.1600-0501.2010.02040.x.
Resumo:
Aim: To evaluate the healing at implants with a moderately rough surface placed and stabilized in recipient sites of dimensions deeper and larger than that of the implants to avoid any contact between parent bone and the implant.Material & methods: In six Labrador dogs, premolars and first molars were extracted bilaterally in the mandible. After 3 months of healing, mucoperiosteal full-thickness flaps were elevated and the premolar area of the alveolar bony crest was selected. Three recipient sites were prepared to place three implants. One implant was used as control. The other two were placed in recipient sites which left a circumferentially and periapical prepared defect of 0.7 mm (small) and 1.2 mm (large), respectively. All implants were stabilized with passive fixation plates to maintain the implants stable and without any contact with the implant bed. After 3 months of submerged healing, the animals were sacrificed. Ground sections were prepared and analyzed histomorphometrically.Results: The BIC% was 5.3% and 0.3% for implants placed in small and large defect sites, respectively, whereas it was 46.1% for control implants. The differences were statistically significant. The width of the residual defects was 0.4 and 0.5 mm at the small and large defects, respectively. An approximately 0.09 mm layer of dense connective tissue (DCT) rich in fibers and fibroblast-like cells was observed adherent to the implant surfaces. The percentage of implant surface covered by DCT was 92.8% and 95.6% at the small and large defects, respectively.Conclusion: Osseointegration was observed at the test sites, and the dimensions of the defects influenced the outcomes. However, the degree of osseointegration at both small and large defects was very low compared with the control sites.
Resumo:
Aim: To evaluate the effect of mismatching abutments on implants with a wider platform on the peri-implant hard tissue remodeling and the soft tissue dimensions.Material and methods: Mandibular premolars and first molars of six Labrador dogs were extracted bilaterally. After 3 months of healing, one tapered implant was installed on each side of the mandibular molar region with the implant shoulder placed at the level of the buccal alveolar bony crest. on the right side of the mandible, an abutment of reduced diameter in relation to the platform of the implant was used, creating a mismatch of 0.85 mm (test), whereas an abutment of the same diameter of the implant platform was affixed in the left side of the mandible (control). The flaps were sutured to allow a non-submerged healing. After 4 months, the animals were sacrificed and ground sections were obtained for histometric assessment.Results: All implants were completely osseo-integrated. Bone levels were superior at the test than at the control sites. However, statistically significant differences were found only at the buccal and proximal aspects. The soft tissue vertical dimension was higher at the control compared with the test sites. However, statistically significant differences were demonstrated only at the buccal aspects.Conclusions: A mismatch of 0.85 mm between the implant and the abutment yielded more coronal levels of bone-to-implant contact and a reduced height of the peri-implant soft tissue (biologic width), especially at the buccal aspect, if the implant shoulder was placed flush with the level of the buccal alveolar bony crest.
Resumo:
AimTo evaluate the influence of magnesium-enriched hydroxyapatite (MHA) (SintLife (R)) on bone contour preservation and osseointegration at implants placed immediately into extraction sockets.Material and methodsIn the mandibular pre-molar region, implants were installed immediately into extraction sockets of six Labrador dogs. MHA was placed at test sites, while the control sites did not receive augmentation materials. Implants were intended to heal in a submerged mode. After 4 months of healing, the animals were sacrificed, and ground sections were obtained for histomorphometric evaluation.ResultsAfter 4 months of healing, one control implant was not integrated leaving n=5 test and control implants for evaluation. Both at the test and the control sites, bone resorption occurred. While the most coronal bone-to-implant contact was similar between test and control sites, the alveolar bony crest outline was maintained to a higher degree at the buccal aspect of the test sites (loss: 0.7 mm) compared with the control sites (loss: 1.2 mm), even though this difference did not reach statistical significance.ConclusionsThe use of MHA to fill the defect around implants placed into the alveolus immediately after tooth extraction did not contribute significantly to the maintenance of the contours of the buccal alveolar bone crest.To cite this article:Caneva M, Botticelli D, Stellini E, Souza SLS, Salata LA, Lang NP. Magnesium-enriched hydroxyapatite at immediate implants: a histomorphometric study in dogs.Clin. Oral Impl. Res. 22, 2011; 512-517doi: 10.1111/j.1600-0501.2010.02040.x.