997 resultados para Aluminum Metallography - Precipitation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The localized corrosion of Al-(5.03%)Zn-(1.67%)Mg-(0.23%)Cu alloys and high purity Al has been studied using electrochemical techniques, optical microscopy, SEM and EDX. The samples were previously submitted to different heat treatments in which coherent and incoherent MgZn 2 precipitates with different distribution and aggregation degree were produced. The influence of NaCl and Na 2SO 4, dissolved oxygen, immersion time and convection were studied. In NaCl solutions, pitting potentials for the alloys were more negative than for aluminium, indicating an increase in their susceptibility to localized corrosion. Moreover, annealed and cold-rolled alloys presented more negative pitting and repassivation potentials than those submitted to age hardening with direct or interrupted quenching. In annealed and cold-rolled samples, pit nucleation and propagation takes place in the zones where MgZn 2 is accumulated. In the case of the age-hardened alloys, a double pitting behaviour is observed, the first one in the magnesium and zinc enriched regions and the second in the matrix. While the cold water quenched alloy is susceptible to stress corrosion craking, the alloy submitted to the interrupted quenching process is less susceptible to intergranular attack. The sulphate ion shifts the pitting potential of aluminium and the alloys by chloride towards more positive values because it impedes local accumulations of the latter. © 1992 Chapman & Hall.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

"Prepared for conference on "Phase transformations in solids" organized by National Research Council Committee on Solids, Cornell University, Aug. 23-27, 1948."

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Friction-stir processing (FSP) has been proven as a successful method for the grain refinement of high-strength aluminum alloys. The most important attributes of this process are the fine-grain microstructure and characteristic texture, which impart suitable properties in the as-processed material. In the current work, FSP of the precipitation-hardenable aluminum alloy 2219 has been carried out and the consequent evolution of microstructure and texture has been studied. The as-processed materials were characterized using electron back-scattered diffraction, x-ray diffraction, and electron probe microanalysis. Onion-ring formation was observed in the nugget zone, which has been found to be related to the precipitation response and crystallographic texture of the alloy. Texture development in the alloy has been attributed to the combined effect of shear deformation and dynamic recrystallization. The texture was found heterogeneous even within the nugget zone. A microtexture analysis revealed the dominance of shear texture components, with C component at the top of nugget zone and the B and A(2)* components in the middle and bottom. The bulk texture measurement in the nugget zone revealed a dominant C component. The development of a weaker texture along with the presence of some large particles in the nugget zone indicates particle-stimulated nucleation as the dominant nucleation mechanism during FSP. Grain growth follows the Burke and Turnbull mechanism and geometrical coalescence.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this present work a method for the determination of Ca, Fe, Ga, Na, Si and Zn in alumina (Al(2)O(3)) by inductively coupled plasma optical emission spectrometry (ICP OES) with axial viewing is presented. Preliminary studies revealed intense aluminum spectral interference over the majority of elements and reaction between aluminum and quartz to form aluminosilicate, reducing drastically the lifetime of the torch. To overcome these problems alumina samples (250 mg) were dissolved with 5 mL HCl + 1.5 mLH(2)SO(4) + 1.5 mL H(2)O in a microwave oven. After complete dissolution the volume was completed to 20 mL and aluminum was precipitated as Al(OH)(3) with NH(3) (by bubbling NH(3) into the solution up to a pH similar to 8, for 10 min). The use of internal standards (Fe/Be, Ga/Dy, Zn/In and Na/Sc) was essential to obtain precise and accurate results. The reliability of the proposed method was checked by analysis of alumina certified reference material (Alumina Reduction Grade-699, NIST). The found concentrations (0.037%w(-1) CaO, 0.013% w w(-1) Fe(2)O(3), 0.012%w w(-1)Ga(2)O(3), 0.49% w w(-1) Na(2)O, 0.014% w w(-1) SiO(2) and 0.013% w w(-1) ZnO) presented no statistical differences compared to the certified values at a 95% confidence level. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In order to determine the best annealing temperature at which to age-harden the alloys, hardness tests on speci­men annealed for different lengths of time at different temperatures were made.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Synthesis of one-dimensional AlN nanostructures commonly requires high process temperatures (>900 °C), metal catalyst, and hazardous gas/powder precursors. We report on a simple, single-step, catalyst-free, plasma-assisted growth of dense patterns of size-uniform single-crystalline AlN nanorods at a low substrate temperature (∼650 °C) without any catalyst or hazardous precursors. This unusual growth mechanism is based on highly effective plasma dissociation of N2 molecules, localized species precipitation on AlN islands, and reduced diffusion on the nitrogen-rich surface. This approach can also be used to produce other high-aspect-ratio oxide and nitride nanostructures for applications in energy conversion, sensing, and optoelectronics. © 2010 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to obtain basic understanding of microstructure evolution in laser-surface-alloyed layers, aluminum was surface alloyed on a pure nickel substrate using a CO2 laser. By varying the laser scanning speed, the composition of the surface layers can be systematically varied. The Ni content in the layer increases with increase in scanning speed. Detailed cross-sectional transmission electron microscopic study reveals complexities in solidification behavior with increased nickel content. It is shown that ordered B2 phase forms over a wide range of composition with subsequent precipitation of Ni2Al, an ordered omega phase in the B2 matrix, during solid-state cooling. For nickel-rich alloys associated with higher laser scan speed, the fcc gamma phase is invariably the first phase to grow from the liquid with solute trapping. The phase reorders in the solid state to yield gamma' Ni3Al. The phase competes with beta AlNi, which forms massively from the liquid. The beta AlNi transforms martensitically to a 3R structure during cooling in solid state. The results can be rationalized in terms of a metastable phase diagram proposed earlier. However, the results are at variance with earlier studies of laser processing of nickel-rich alloys.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence of microstructure and texture developed by different modes of hot cross-rolling on in-plane anisotropy (A (IP)) of yield strength, work hardening behavior, and anisotropy of Knoop hardness (KHN) yield locus has been investigated. The A (IP) and work hardening behavior are evaluated by tensile testing at 0 deg, 45 deg, and 90 deg to the rolling direction, while yield loci have been generated by directional KHN measurements. It has been observed that specimens especially in the peak-aged temper, in spite of having a strong, rotated Brass texture, show low A (IP). The results are discussed on the basis of Schmid factor analyses in conjunction with microstructural features, namely grain morphology and precipitation effects. For the specimen having a single-component texture, the yield strength variation as a function of orientation can be rationalized by the Schmid factor analysis of a perfectly textured material behaving as a quasi-single crystal. The work hardening behavior is significantly affected by the presence of solute in the matrix and the state of precipitation rather than texture, while yield loci derived from KHN measurements reiterate the low anisotropy of the materials. Theoretic yield loci calculated from the texture data using the visco-plastic self-consistent model and Hill's anisotropic equation are compared with that obtained experimentally.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The microstructures and the characteristics of water-atomized, nitrogen gas-atomized Al powders and ultrasonic argon gas-atomized Al-Li alloy powder were investigated by means of metallography, SEM, Auger electron spectroscopy and X-ray diffraction techniques. Rapidly solidified powders were explosively consolidated into different sized cylinders under various explosive parameters. The explosively consolidated compacts have been tested and analysed for density microhardness, retention of rapidly solidified microstructures, interparticle bonding, fractography and lattice distortion. It is shown that the explosive consolidation technique is an effective method for compacting rapidly solidified powders. The characteristics of surface layers play a very important role in determining the effectiveness of the joints sintered, and the Al-Li alloy explosive compacts present an abnormal softening appearance compared to the original powder.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cr3+-doped NH4Al(OH)(2)CO3 nanotubes, templated by surfactant assemblies, were successfully synthesized via the homogenization precipitation method, and various crystallographic phase Al2O3:Cr3+ nanotubes were also obtained by postannealing at different temperatures. The characteristic R-1, R-2 doublet line transitions of ruby can be observed in the high crystalline alpha-Al2O3 nanotubes calcined at temperatures higher than 1200 degrees C. The results also indicate that the formation mechanism of the tubular nanostructures should result from the self-rolling action of layered compound NH4Al(OH)(2)CO3 under the assistance of the surfactant soft-template. The convenient synthetic procedure, excellent reproducibility, clean reactions, high yield, and fine quality of products in this work make the present route attractive and significant. Aluminum oxide nanotubes with high specific surface area could be used as fabricating nanosized optical devices doped with different elements and stable catalyst supports of metal clusters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of sesquioxides on the mechanisms of chemical reactions that govern the transformation between exchangeable potassium (Kex) and non-exchangeable K (Knex) was studied on acid tropical soils from Colombia: Caribia with predominantly 2 : 1 clay minerals and High Terrace with predominantly 1 : 1 clay minerals and sesquioxides. Illite and vermiculite are the main clay minerals in Caribia followed by kaolinite, gibbsite, and plagioclase, and kaolinite is the major clay mineral in High Terrace followed by hydroxyl-Al interlayered vermiculite, quartz, and pyrophyllite. The soils have 1.8 and 0.5% of K2O, respectively. They were used either untreated or prepared by adding AlCl3 and NaOH, which produced aluminum hydroxide. The soils were percolated continuously with 10mM NH4OAc at pH 7.0 and 10 mM CaCl2 at pH 5.8 for 120 h at 6 mL h(-1) to examine the release of Kex and Knex. In the untreated soils, NH4+ and Ca-2(+) released the same amounts of Kex from Caribia, whereas NH4+ released about twice as much Kex as Ca2+ from High Terrace. This study proposes that the small ionic size of NH4+ (0.54nm) enables it to enter more easily into the K sites at the broken edges of the kaolinite where Ca2+ (0.96 nm) cannot have access. As expected for a soil dominated by 2 : 1 clay minerals, Ca2+ caused Knex to be released from Caribia with no release by NH4+. No Knex was released by either ion from High Terrace. After treatment with aluminum hydroxide, K release from the exchangeable fraction was reduced in Caribia due to the blocking of the exchange sites but release of Knex was not affected. The treatment increased the amount of Kex released from the High Terrace soil and the release of Knex remained negligible although with Ca2+ the distinction between Kex and Knex was unclear. The increase in Kex was attributed to the initially acidic conditions produced by adding AlCl3 which may have dissolved interlayered aluminum hydroxide from the vermiculite present, thus exposing trapped K as exchangeable K. The subsequent precipitation of aluminum hydroxide when NaOH was added did not interfere with the release of this K, and so was probably formed mostly on the surface of the dominant kaolinite. Measurement of availability of K by standard methods using NH4 salts could result in overestimates in High Terrace and this may be a more general shortcoming of the methods in kaolinitic soils.