983 resultados para Aluminum Interlayer


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Anodic bonding of Pyrex glass/Al/Si is an important bonding technique in micro/nanoelectromechanical systems (MEMS/NEMS) industry. The anodic bonding of Pyrex 7740 glass/Aluminum film/Silicon is completed at the temperature from 300 degrees C to 375 degrees C with a bonding voltage between 150 V and 450 V. The fractal patterns are formed in the intermediate Al thin film. This pattern has the fractal dimension of the typical two-dimensional diffusion-limited aggregation (2D DLA) process, and the fractal dimension is around 1.7. The fractal patterns consist of Al and Si crystalline grains, and their occurrences are due to the limited diffusion, aggregation, and crystallization of Si and Al atoms in the intermediate Al layers. The formation of the fractal pattern is helpful to enhance the bonding strength between the Pyrex 7740 glass and the aluminum thin film coated on the crystal silicon substrates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of acid treatment, vapor grown carbon fiber (VGCF) interlayer and the angle, i.e., 0° and 90°, between the rolling stripes of an aluminum (Al) plate and the fiber direction of glass fiber reinforced plastics (GFRP) on the mode II interlaminar mechanical properties of GFRP/Al laminates were investigated. The experimental results of an end notched flexure test demonstrate that the acid treatment and the proper addition of VGCF can effectively improve the critical load and mode II fracture toughness of GFRP/Al laminates. The specimens with acid treatment and 10 g m−2 VGCF addition possess the highest mode II fracture toughness, i.e., 269% and 385% increases in the 0° and 90° specimens, respectively compared to those corresponding pristine ones. Due to the induced anisotropy by the rolling stripes on the aluminum plate, the 90° specimens possess 15.3%–73.6% higher mode II fracture toughness compared to the 0° specimens. The improvement mechanisms were explored by the observation of crack propagation path and fracture surface with optical, laser scanning and scanning electron microscopies. Moreover, finite element analyses were carried out based on the cohesive zone model to verify the experimental fracture toughness and to predict the interface shear strength between the aluminum plates and GFRP laminates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The tridecameric Al-polymer [AlO4Al12(OH)24(H2O)12]7+ was prepared by forced hydrolysis of Al3+ up to an OH/Al molar ratio of 2.2. Under slow evaporation crystals were formed of Al13-nitrate. Upon addition of sulfate the tridecamer crystallised as the monoclinic Al13-sulfate. These crystals have been studied using near-infrared spectroscopy and compared to Al2(SO4)3.16H2O. Although the near-infrared spectra of the Al13-sulfate and nitrate are very similar indicating similar crystal structures, there are minor differences related to the strength with which the crystal water molecules are bonded to the salt groups. The interaction between crystal water and nitrate is stronger than with the sulfate as reflected by the shift of the crystal water band positions from 6213, 4874 and 4553 cm–1 for the Al13 sulfate towards 5925, 4848 and 4532 cm–1 for the nitrate. A reversed shift from 5079 and 5037 cm–1 for the sulfate towards 5238 and 5040 cm–1 for the nitrate for the water molecules in the Al13 indicate that the nitrate-Al13 bond is weakened due to the influence of the crystal water on the nitrate. The Al-OH bond in the Al13 complex is not influenced by changing the salt group due to the shielding by the water molecules of the Al13 complex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, unlike conventional method in supplying shielding gas, a newly method which alternately supplies different kinds of shielding gases in weld zone is developed and partly commercialized. However, literature related to the present status of the technology in the actual weld field is very scant. To give better understand on this technology, this study was performed. Compared with conventional gas supply method, the variations of weld porosity and weld shape in aluminum welding with alternate supply method of pure argon and pure helium were compared with conventional gas supply method with pure argon and argon + 67%helium mixture, respectively. As a result, compared with the welding by supplying pure argon and argon + 67%helium mixture by conventional method, the welding by supplying alternately pure argon and pure helium, produced lower degree of weld porosity and deeper and broader weld penetration profile.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents bonding technology of aluminum alloy by hot-dipping tin. The dissolution curve of copper in molten tin liquid was obtained in the experiment of hot-dipping Sn. Optimal hot-dipping parameter which was suitable for soldering was designed. To elucidate characteristics of interfacial evolution, the microstructure of the coatings, soldered joint were analyzed using optical microscopy, SEM and EDX. The shear strength of soldered joints was tested as high as 39.9Mpa, which is high enough to achieve the requirement of electronic industry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanism for the decomposition of hydrotalcite remains unsolved. Controlled rate thermal analysis enables this decomposition pathway to be explored. The thermal decomposition of hydrotalcites with hexacyanoferrite(II) and hexacyanoferrate(III) in the interlayer has been studied using controlled rate thermal analysis technology. X-ray diffraction shows the hydrotalcites studied have a d(003) spacing of 11.1 and 10.9 Å which compares with a d-spacing of 7.9 and 7.98 Å for the hydrotalcite with carbonate or sulphate in the interlayer. Calculations based upon CRTA measurements show that 7 moles of water is lost, proving the formula of hexacyanoferrite(II) intercalated hydrotalcite is Mg6Al2(OH)16[Fe(CN)6]0.5 .7 H2O and for the hexacyanoferrate(III) intercalated hydrotalcite is Mg6Al2(OH)16[Fe(CN)6]0.66 * 9 H2O. Dehydroxylation combined with CN unit loss occurs in three steps between a) 310 and 367°C b) 367 and 390°C and c) between 390 and 428°C for both the hexacyanoferrite(II) and hexacyanoferrate(III) intercalated hydrotalcite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Characterization of the combustion products released during the burning of commonly used engineering metallic materials may aid in material selection and risk assessment for the design of oxygen systems. The characterization of combustion products in regards to size distribution and morphology gives useful information for systems addressing fire detection. Aluminum rods (3.2-mm diameter cylinders) were vertically mounted inside a combustion chamber and ignited in pressurized oxygen by resistively heating an aluminum/palladium igniter wire attached to the bottom of the test sample. This paper describes the experimental work conducted to establish the particle size distribution and morphology of the resultant combustion products collected after the burning was completed and subsequently analyzed. In general, the combustion products consisted of a re-solidified oxidized slag and many small hollow spheres of size ranging from about 500 nm to 1000 µm in diameter, surfaced with quenched dendritic and grain-like structures. The combustion products were characterized using optical and scanning electron microscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The adsorption of carbon dioxide and nitrogen molecules on aluminum nitride (AlN) nanostructures has been explored using first-principle computational methods. Optimized configurations corresponding to physisorption and, subsequentially, chemisorption of CO2 are identified, in contrast to N2, for which only a physisorption structure is found. Transition-state searches imply a low energy barrier between the physisorption and chemisorption states for CO2 such that the latter is accessible and thermodynamically favored at room temperature. The effective binding energy of the optimized chemisorption structure is apparently larger than those for other CO2 adsorptive materials, suggesting the potential for application of aluminum nitride nanostructures for carbon dioxide capture and storage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Graphene-based resonators are envisioned to build the ultimate limit of two-dimensional nanoelectromechanical system due to their ultrasensitive detection of mass, force, pressure and charge. However, such application has been greatly impeded by their extremely low quality factor. In the present work, we explore, using the large-scale molecular dynamics simulation, the possibility of tailoring the resonance properties of a bilayer graphene sheet (GS) with interlayer sp3 bonds. For the bilayer GS resonator with interlayer sp3 bonds, we discovered that the sp3 bonds can either degrade or enhance the resonance properties of the resonator depending on their density and location. It is found that the distribution of sp3 bonds only along the edges of either pristine or hydrogenated bilayer GS, leads to a greatly enhanced quality factor. A quality factor of ~1.18×105 is observed for a 3.07×15.31 nm2 bilayer GS resonator with sp3 bonds, which is more than 30 times larger comparing with that of a pristine bilayer GS. The present study demonstrates that the resonance properties of a bilayer GS resonator can be tuned by introducing sp3 bonds. This finding provides a useful guideline for the synthesis of the bilayer GS for its application as a resonator component.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Copper doped zinc aluminium ferrites are synthesized by the solid-state reaction route is cubic crystalline with unit cell parameter varying from 8.39 to 8.89 Å. TEM pictures clearly indicating that fundamental unit is composed of octahedral and tetrahedral blocks and joined strongly shown in (a). EPR spectra is compositional dependent at lower Al/Cu concentration EPR spectra is due to Fe3+ and at a higher content of Al/Cu the EPR spectra is due to Cu2+. Absence of EPR spectra at room temperature indicates that the sample is perfectly ferromagnetic. EPR results at low temperature indicate that the sample is paramagnetic, and that copper is placed in the tetragonal elongation (B) site with magnetically non-equivalent ions in the unit cell having strong exchange coupling between them. This is shown in (b). (a) TEM image of ferrite with x = 0.15. (b) EPR spectrum of ferrite with x = 0.75.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synthesis of one-dimensional AlN nanostructures commonly requires high process temperatures (>900 °C), metal catalyst, and hazardous gas/powder precursors. We report on a simple, single-step, catalyst-free, plasma-assisted growth of dense patterns of size-uniform single-crystalline AlN nanorods at a low substrate temperature (∼650 °C) without any catalyst or hazardous precursors. This unusual growth mechanism is based on highly effective plasma dissociation of N2 molecules, localized species precipitation on AlN islands, and reduced diffusion on the nitrogen-rich surface. This approach can also be used to produce other high-aspect-ratio oxide and nitride nanostructures for applications in energy conversion, sensing, and optoelectronics. © 2010 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aluminum-doped p-type polycrystalline silicon thin films have been synthesized on glass substrates using an aluminum target in a reactive SiH 4+Ar+H2 gas mixture at a low substrate temperature of 300∈°C through inductively coupled plasma-assisted RF magnetron sputtering. In this process, it is possible to simultaneously co-deposit Si-Al in one layer for crystallization of amorphous silicon, in contrast to the conventional techniques where alternating metal and amorphous Si layers are deposited. The effect of aluminum target power on the structural and electrical properties of polycrystalline Si films is analyzed by X-ray diffraction, Raman spectroscopy, scanning electron microscopy and Hall-effect analysis. It is shown that at an aluminum target power of 100 W, the polycrystalline Si film features a high crystalline fraction of 91%, a vertically aligned columnar structure, a sheet resistance of 20.2 kΩ/□ and a hole concentration of 6.3×1018 cm-3. The underlying mechanism for achieving the semiconductor-quality polycrystalline silicon thin films at a low substrate temperature of 300∈°C is proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A custom-designed inductively coupled plasma (ICP)-assisted radio-frequency magnetron sputtering deposition system has been employed to synthesize aluminium-doped zinc oxide (ZnO:Al) nanofilms on glass substrates at room temperature. The effects of film thickness and ZnO target (partially covered by Al chips) power on the structural, electrical and optical properties of the ZnO:Al nanofilms are studied. A high growth rate (∼41 nm/min), low electrical sheet resistance (as low as 30 Ω/□) and high optical transparency (>80%) over the visible spectrum has been achieved at a film thickness of ∼615 nm and ZnO target power of 150 W. The synthesis of ZnO:Al nanofilms at room temperature and with high growth rates is attributed to the unique features of the ICP-assisted radio-frequency magnetron sputtering deposition approach. The results are relevant to the development of photovoltaic thin-film solar cells and flat panel displays.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A plasma-assisted concurrent Rf sputtering technique for fabrication of biocompatible, functionally graded CaP-based interlayer on Ti-6Al-4V orthopedic alloy is reported. Each layer in the coating is designed to meet a specific functionality. The adherent to the metal layer features elevated content of Ti and supports excellent ceramic-metal interfacial stability. The middle layer features nanocrystalline structure and mimics natural bone apatites. The technique allows one to reproduce Ca/P ratios intrinsic to major natural calcium phosphates. Surface morphology of the outer, a few to few tens of nanometers thick, layer, has been tailored to fit the requirements for the bio-molecule/protein attachment factors. Various material and surface characterization techniques confirm that the optimal surface morphology of the outer layer is achieved for the process conditions yielding nanocrystalline structure of the middle layer. Preliminary cell culturing tests confirm the link between the tailored nano-scale surface morphology, parameters of the middle nanostructured layer, and overall biocompatibility of the coating.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the influence of interlayer properties on the blast performance of laminated glass (LG) panels. A parametric study is carried out by varying the thickness and Young’s modulus (E) of the interlayer under two different blast loads. Results indicate the existence of a critical interlayer thickness (or E) that causes the onset of interlayer failure. This should be achieved in the design to enhance energy absorption, reduce support reactions and initiate a safer failure mode. Present findings provide information to achieve such design targets and enable safe and efficient performance of LGs under credible blast loads.