818 resultados para Aluminium Phosphide


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aluminium phosphide (AlP) particles arc often suggested to be the nucleation site for eutectic silicon in Al-Si alloys, since both the crystal structure and lattice parameter of AlP (crystal structure: cubic K(4) over bar m; lattice parameter: 5.421 Angstrom) are close to that of silicon (cubic Fd3m, 5.431 Angstrom), and the melting point is higher than the Al-Si eutectic temperature. However, the crystallographic relationships between AlP particles and the surrounding eutectic silicon are seldom reported due to the difficulty in analysing the AlP particles, which react with water during sample preparation for polishing. in this study, the orientation relationships between AlP and Si are analysed by transmission electron microscopy using focused ion-beam milling for sample preparation to investigate the nucleation mechanism of eutectic silicon on AlP. The results show a clear and direct lattice relationship between centrally located AlP particles and the surrounding silicon in the hypoeutectic Al-Si alloy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structure of laser glasses in the system (Y(2)O(3))(0.2){(Al(2)O(3))(x))(B(2)O(3))(0.8-x)} (0.15 <= x <= 0.40) has been investigated by means of (11)B, (27)Al, and (89)Y solid state NMR as well as electron spin echo envelope modulation (ESEEM) of Yb-doped samples. The latter technique has been applied for the first time to an aluminoborate glass system. (11)B magic-angle spinning (MAS)-NMR spectra reveal that, while the majority of the boron atoms are three-coordinated over the entire composition region, the fraction of three-coordinated boron atoms increases significantly with increasing x. Charge balance considerations as well as (11)B NMR lineshape analyses suggest that the dominant borate species are predominantly singly charged metaborate (BO(2/2)O(-)), doubly charged pyroborate (BO(1/2)(O(-))(2)), and (at x = 0.40) triply charged orthoborate groups. As x increases along this series, the average anionic charge per trigonal borate group increases from 1.38 to 2.91. (27)Al MAS-NMR spectra show that the alumina species are present in the coordination states four, five and six, and the fraction of four-coordinated Al increases markedly with increasing x. All of the Al coordination states are in intimate contact with both the three-and the four-coordinate boron species and vice versa, as indicated by (11)B/(27)Al rotational echo double resonance (REDOR) data. These results are consistent with the formation of a homogeneous, non-segregated glass structure. (89)Y solid state NMR spectra show a significant chemical shift trend, reflecting that the second coordination sphere becomes increasingly ""aluminate-like'' with increasing x. This conclusion is supported by electron spin echo envelope modulation (ESEEM) data of Yb-doped glasses, which indicate that both borate and aluminate species participate in the medium range structure of the rare-earth ions, consistent with a random spatial distribution of the glass components.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The performance optimisation of overhead conductors depends on the systematic investigation of the fretting fatigue mechanisms in the conductor/clamping system. As a consequence, a fretting fatigue rig was designed and a limited range of fatigue tests was carried out at the middle high cycle fatigue regime in order to access an exploratory S-N curve for a Grosbeak conductor, which was mounted on a mono-articulated aluminium clamping system. Subsequent to these preliminary fatigue tests, the components of the conductor/clamping system, such as ACSR conductor, upper and lower clamps, bolt and nuts, were subjected to a failure analysis procedure in order to investigate the metallurgical free variables interfering on the fatigue test results, aiming at the optimisation of the testing reproducibility. The results indicated that the rupture of the planar fracture surfaces observed in the external At strands of the conductor tested under lower bending amplitude (0.9 mm) occurred by fatigue cracking (I mm deep), followed by shear overload. The V-type fracture surfaces observed in some At strands of the conductor tested under higher bending amplitude (1.3 mm) were also produced by fatigue cracking (approximately 400 mu m deep), followed by shear overload. Shear overload fracture (45 degrees fracture surface) was also observed on the remaining At wires of the conductor tested under higher bending amplitude (1.3 mm). Additionally, the upper and lower Al-cast clamps presented microstructure-sensitive cracking, which was folowed by particle detachment and formation of abrasive debris on the clamp/conductor tribo-interface, promoting even further the fretting mechanism. The detrimental formation of abrasive debris might be inhibited by the selection of a more suitable class of as-cast At alloy for the production of clamps. Finally, the bolt/nut system showed intense degradation of the carbon steel nut (fabricated in ferritic-pearlitic carbon steel, featuring machined threads with 190 HV), with intense plastic deformation and loss of material. Proper selection of both the bolt and nut materials and the finishing processing might prevent the loss in the clamping pressure during the fretting testing. It is important to control the specification of these components (clamps, bolt and nuts) prior to the start of large scale fretting fatigue testing of the overhead conductors in order to increase the reproducibility of this assessment. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aluminum (Al) toxicity is a major worldwide agricultural problem. At low pH, Al speciates into the soluble and phyto-toxic form Al(3+), inhibiting the root growth and affecting plant development. In Brazil, agriculture in acidic soils with elevated concentration of Al has significantly increased in the last decades. Therefore, in order to achieve efficient agriculture practices, the selection of plant cultivars with improved Al resistance has become crucial in this type of soils. In this work we have evaluated the Al resistance of six genotypes of grapevine rootstocks. The grapevine hardwood cuttings were grown in nutrient solution in the absence and presence of 250 and 500 mu M Al at pH 4.2. The phenotypic indexes of relative root growth, fresh and dry root weight, root area, hematoxylin staining profile, and Al content were evaluated for all six genotypes. These phenotypic indexes allowed us to identify the `Kober 5BB`, `Gravesac`, `Paulsen 1103`, and `IAC 766` grapevine rootstocks genotypes as the ones with the highest resistance to Al. Likewise, `IAC 572` and `R110` genotypes were the most Al-sensitive cultivars. We evaluated the root organic acid exudation profile in the most Al-resistant (`Kober 5BB`) and most Al-sensitive (`R110`) in plantlets cultivated in vitro in the absence and presence of 100, 200, and 400 mu M of Al. Among several compounds detected, citrate was the only organic acid related to the Al resistance phenotype observed in the `Kober 5BB` genotype. The high constitutive citrate exudation observed in `Kober 5BB` strongly suggests that exudation of this particular organic acid may impart Al-resistance/a melioration in grapevine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although monomeric Al species are often toxic in acidic soils, the effects of the aluminate ion (Al(OH)4-) on roots grown in alkaline media are still unclear. Dilute, alkaline (pH 9.5) nutrient solutions were used to investigate the effects of Al(OH)4- on root growth of mungbean (Vigna radiata L.). Root growth was reduced by 13 % after 3 d growth in solutions with an Al(OH)4- activity of 16 μM and no detectable polycationic Al (Al13). This decrease in root growth was associated with the formation of lesions on the root tips (due to the rupturing of the epidermal and outer cortical cells) and a slight limitation to root hair growth (particularly on the lateral roots). When roots displaying these symptoms were transferred to fresh Al(OH)4- solutions for a further 12 h, no root tip lesions were observed and root hair growth on the lateral roots improved. The symptoms were similar to those induced by Al13 at concentrations as low as 0.50 μM Al which are below the detection limit of the ferron method. Thus, Al(OH)4- is considered to be non-toxic, with the observed reduction in root growth in solutions containing Al(OH)4- due to the gradual formation of toxic Al13 in the bulk nutrient solution resulting from the acidification of the alkaline nutrient solution by the plant roots.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Freeform fabrication methods allow the direct formation of parts built layer by layer, under the control of a CAD drawing. Most of these methods form parts in thermoplastic or thermoset polymers, but there would be many applications for freeform fabrication of fully functional metal or ceramic parts. We describe here the freeforming of sinterable aluminium alloys. In addition, the building approach allows different materials to be positioned within a monolithic part for an optimal combination of properties. This is illustrated here with the formation of an aluminium gear with a metal-matrix composite wear surface. (C) 1999 Kluwer Academic Publishers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A magnesium-aluminium alloy of eutectic composition was solidified under two different cooling conditions, producing a low and a high growth rate of the eutectic solid-liquid interface. The high growth rate specimen contained smaller eutectic grains and cells, with a smaller interphase spacing compared with the low growth rate specimen. The high growth rate specimen also contained some primary Mg17Al12 dendrites, suggesting that the coupled zone is skewed towards the Mg phase with increased undercooling, A lamellar eutectic morphology was observed in the low growth rate specimen, while the morphology was fibrous in the high growth rate specimen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hypoeutectic AI-Si alloys represent the most widely used alloy system for cast aluminium applications. This system has a unique behaviour with respect to grain formation where an increase in silicon content results in a transition to larger grain sizes after a minimum at an intermediate concentration. As a result of the already large solute content, grain refinement by solute additions is inefficient and nucleant particles from the common aluminium grain refiners are not as effective as in wrought alloys. However, casting conditions, such as a low pouring temperature, that promote the formation of wall crystals tie. crystals nucleated in the thermally undercooled layer at or next to mould walls) are very effective in yielding a small grain size. This paper presents results of an investigation of the effect of low superheat and mould preheat temperature on grain size. It was found that pouring temperature controls the effectiveness of the wall mechanism while mould preheat has little effect until high preheat temperatures at which a large increase in grain size occurs. The observed changes in grain size are explained in terms of the balance between nucleation rate and survival rate of crystal nuclei resulting from changes in superheat and mould temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mesoporous MCM-41 silica immobilized aluminium chloride shows high catalytic activity and selectivity in the Friedel-Crafts alkylation of naphthalene with isopropanol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Partially solid commercial Al-Si and Mg-Al alloys have been deformed in shear during solidification using vane rheometry. The dendritic mush was deformed for a short period at 29% solid and allowed to cool naturally after deformation. Both alloys exhibited yield point behaviour and deformation was highly localised at the surface of maximum shear stress. The short period of deformation was found to have a distinct impact on the as-cast microstructure leading to fragmented dendrites in the deformation region of both alloys. In the case of the Mg-Al alloy, a concentrated region of interdendritic porosity was also observed in the deformation region. Concentrated porosity was not observed in the Al-Si alloy. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vertical direct chill (VDC) casting of aluminium alloys is a mature process that has evolved over many decades through gradual change to both equipment design and casting practice. Today, air-pressurised, continuous lubrication, hot top mould systems with advanced station automation are selected as the process of choice for producing extrusion billet. Specific sets of operating parameters are employed on these stations for each alloy and size combination to produce optimal billet quality. The designs and parameters are largely derived from past experience and accumulated know-how. Recent experimental work at the University of Queensland has concentrated on understanding the way in which the surface properties of liquid aluminium alloys, e.g., surface tension, wetting angle and oxide skin strength, influence the size and shape of the naturally-stab le meniscus for a given alloy, temperature and atmosphere. The wide range of alloy-and condition-dependent values measured has led to the consideration of how these properties impact the stability of the enforced molten metal meniscus within the hot top mould cavity. The actual shape and position of the enforced meniscus is controlled by parameters such as the upstream conduction distance (UCD) from sub-mould cooling and the molten metal head. The degree of deviation of this actual meniscus from the predicted stable meniscus is considered to be a key driver in surface defect formation. This paper reports on liquid alloy property results and proposes how this knowledge might be used to better design VDC mould systems and casting practices.

Relevância:

20.00% 20.00%

Publicador: