919 resultados para Aluminium Alloy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cast aluminium alloy-mica particle composites were made by dispersing mica particles in a vortex produced by stirring the liquid Al-4 wt% Cu-1.5 wt% Mg alloy and then casting the melt containing the suspended particles into permanent moulds. Spiral fluidity and casting fluidity of the alloy containing mica particles in suspension were determined. Both the spiral fluidity and the casting fluidity of the base alloy were found to decrease with an increase in volume or weight percent of mica particles (of a given size), and with a decrease in particle size (for a given amount of particles). The fluidities of Al-4 wt% Cu-1.5 wt% Mg alloys containing suspended mica particles were found to correlate very well with the surface area of suspended mica particles. The regression equation for spiral fluidity Y (cm) as a function of surface area of mica particles per gram of spiral X (cm2 g–1) at 700° C was found to be Y=42.62–0.42X with a correlation coefficient of 0.9634. The regression equations for casting fluidity Yprime (cm) as a functiono of surface area of mica particles per gram of fluidity test piece Xprime (cm2 g–1) at 710 and 670° C were found to be Yprime=19.71–0.17Xprime and Yprime=13.52–0.105Xprime with correlation coefficients of 0.9194 and 0.9612 respectively. The percentage decrease in casting fluidity of composite melts containing up to 2.5 wt% mica with a drop in temperature is quite similar to the corresponding decrease in the casting fluidity of base alloy melts (without mica). The change in fluidity due to mica dispersions has been discussed in terms of changes in viscosity of the composite melts. However, the fluidities of these composite alloys containing up to 2.5 wt% mica are adequate for making a variety of simple castings including bearings for which these alloys have been developed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The microstructure of a cast Al---Si alloy-graphite particle composite is examined using optical and analytical scanning electron microscopy. Specimens containing different percentages of graphite were machined by orthogonal planning with 25° and 45° rake angle tools at both 6.5 and 13.2 m min−1. The machining forces are reported and the chip-rake-face friction coefficients and shear flow stresses are calculated. It is shown that the reduction in machining forces with increasing graphite content is due mostly to a decrease in the shear flow stress rather than to lower chip-rake-face friction. Both the polished and the machined surfaces of the composite are rougher than those of the simple alloy, apparently owing to the greater porosity, the tearing out of graphite particles, or the opening of cracks at the graphite particles in the wake of the tool.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The optimum conditions for producing cast aluminium alloy-mica particle composites, by stirring mica particles (40 to 120 mgrm) in molten aluminium alloys (above their liquidus temperatures), followed by casting in permanent moulds, are described. Addition of magnesium either as pieces along with mica particles on the surface of the melts or as a previously added alloying element was found to be necessary to disperse appreciable quantities (1.5 to 2 wt.%) of mica particles in the melts and retain them as uniform dispersions in castings under the conditions of present investigation. These castings can be remelted and degassed with nitrogen at least once with the retention of about 80% mica particles in the castings. Electron probe micro-analysis of these cast composites showed that magnesium added to the surface of the melt along with mica has a tendency to segregate around the mica particles, apparently improving the dispersability for mica particles in liquid aluminium alloys. The mechanical properties of the aluminium alloy-mica particle composite decrease with an increase in mica content, however, even at 2.2% the composite has a tensile strength of 14.22 kg mm–2 with 1.1% elongation, a compression strength of 42.61 kg mm–2, and an impact strength of 0.30 kgm cm–2. The properties are adequate for certain bearing applications, and the aluminium-mica composite bearings were found to run under boundary lubrication, semi-dry and dry friction conditions whereas the matrix alloy (without mica) bearings seized or showed stick slip under the same conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The spreadability of SAE-30 oil on Al-12 Si base (LM-13) alloy containing dispersed graphite particles about 50 μm average size in its matrix is found to be greater than on either LM-13 with no graphite or brass. It is also found that the spreadability on LM-13 base alloys increase with increasing volume of graphite dispersion in the matrix of these alloys. Further increases in the spreadability of oil on machined LM-13-graphite particle composite test surfaces occur if these are rubbed initially against control discs of either LM-13 or grey cast iron. The formation of a triboinduced graphite-rich layer, confirmed by esca, appears to be responsible for the improved oil spreadability on the rubbed test surfaces of LM-13 base alloys as compared to the as-machined test surfaces prior to rubbing. The triboinduced layer of graphite is apparently responsible for the observed reduction in the friction, wear and seizing tendency of triboelements made from aluminium alloy-graphite particle composites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A direct method of preparing cast aluminium alloy-graphite particle composites using uncoated graphite particles is reported. The method consists of introducing and dispersing uncoated but suitably pretreated graphite particles in aluminium alloy melts, and casting the resulting composite melts in suitable permanent moulds. The optical pretreatment required for the dispersion of the uncoated graphite particles in aluminium alloy melts consists of heating the graphite particles to 400° C in air for 1 h just prior to their dispersion in the melts. The effects of alloying elements such as Si, Cu and Mg on the dispersability of pretreated graphite in molten aluminium have also been reported. It was found that additions of about 0.5% Mg or 5% Si significantly improve the dispersability of graphite particles in aluminium alloy melts as indicated by the high recoveries of graphite in the castings of these composites. It was also possible to disperse upto 3% graphite in LM 13 alloy melts and retain the graphite particles in a well distributed fashion in the castings using the pre-heat-treated graphite particles. The observations in this study have been related to the information presently available on wetting between graphite and molten aluminium in the presence of different elements and our own thermogravimetric analysis studies on graphite particles. Physical and mechanical properties of LM 13-3% graphite composite made using pre-heat-treated graphite powder, were found to be adequate for many applications, including pistons which have been successfully used in internal combustion engines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The formation and decomposition of quasicrystalline and crystalline phases in as-rapidly solidified and annealed commercial AISI 2024 aluminum alloy containing 2 wt% Li have been investigated by detailed transmission electron microscopy, including a combination of bright field and dark field imaging, selected area diffraction pattern analysis and energy dispersive X-ray microanalysis. The microstructure of as-melt spun 2024-2Li consists of alpha-Al cells, containing small coherent delta' precipitates, and particles or a continuous network of the icosahedral phase at the cell boundaries. After annealing at 300-degrees-C, the intercellular particles of the icosahedral phase coarsen progressively and assume a more faceted shape; after annealing at 400-degrees-C, particles of the decagonal and crystalline O phases precipitate heterogeneously on preexisting particles of the icosahedral phase; and after annealling at 500-degrees-C, the icosahedral and decagonal phases dissolve completely, and small particles of the crystalline O phase remain together with newly precipitated plates of the T1 phase. The icosahedral phase in melt spun and melt spun/annealed 2024-2Li belongs to the Al6CuLi3 class of icosahedral phases, with a quasilattice constant of 0.51 nm, a stoichiometry of (Al, Si)6(Cu, Mn, Fe) (Li, Mg)3 and an average composition of Al-24.1 at.% Cu-6.4 at.% Mg-1.7 at.% Si-0.3 at.% Mn-0.5 at.% Fe as-melt spun and Al-21.9 at.% Cu-6.3 at.% Mg-1.0 at.% Si-0.5 at.% Fe as-heat-treated. The decagonal phase in melt spun/annealed 2024-2Li belongs to the Al4Mn class of decagonal phases, with a periodicity of 1.23 nm along the 10-fold symmetry axis, a stoichiometry of Al3(Cu, Mn, Fe) and an average composition of Al-10.3 at.% Cu-13.8 at.% Mn-2.3 at.% Fe. The crystalline O phase in melt spun/annealed 2024-2Li has an orthorhombic structure with lattice parameters of a = 2.24 nm, b = 2.35 nm and c = 1.23 nm, a stoichiometry of Al3(Cu, Mn, Fe) and an average composition of Al-11.0 at.% Cu-14.8 at.% Mn-3.9 at.% Fe. Detailed analysis of selected area diffraction patterns shows a close similarity between the icosahedral, decagonal and crystalline O phases in melt spun and melt spun/annealed 2024-2Li. In particular, the decagonal phase and crystalline O phases have a similar composition, and exhibit an orientation relationship which can be expressed as: [GRAPHICS] suggesting that the orthorhombic O phase is an approximant structure for the decagonal phase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present investigation, a strongly bonded strip of an aluminium-magnesium based alloy AA5086 is successfully produced through accumulative roll bonding (ARB). A maximum of up to eight passes has been used for the purpose. Microstructural characterization using electron backscatter diffraction (EBSD) technique indicates the formation of submicron sized (similar to 200-300 nm) subgrains inside the layered microstructure. The material is strongly textured where individual layers possess typical FCC rolling texture components. More than three times enhancement in 0.2% proof stress (PS) has been obtained after 8 passes due to grain refinement and strain hardening. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present work, the evolution of microstructure during solidification of A356 alloy under stirring is performed experimentally in a high temperature concentric viscometer. The stirring during solidification results a semisolid slurry in the annular space between the cylinders. This slurry is removed periodically during processing using a vacuum removal quartz tube and quenched in water for micrograph analysis. From the micrograph analysis, the shape, stacking arrangement and corresponding microstructural evolution of the suspended primary particles in the slurry are studied. The work also predicts the fraction of solid present in the extracted slurry. Finally, the effect of microstructure and the solid-fraction on the slurry viscosity is presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a numerical model for friction welding of thixo-cast materials is developed, which includes a coupling of thermal effect and plastic deformation using a finite element method (FEM). As the constitutive equations for flow behavior of materials for a thixo-cast material are expected to be different from those of conventionally cast material of the same alloy, the necessary material data are experimentally determined from isothermal hot compression tests of the A356 thixocast alloy. The Johnson-Cook model has been employed to represent the flow behavior of the thixocast A356 alloy. The purpose of this FEM analysis is to provide better understanding of the friction welding process of thixo-cast material, and to obtain optimized process parameters before an actual welding is carried out.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rheological behavior of semi-solid slurries forms the backbone of semi-solid processing of metallic alloys. In particular, the effects of several process and metallurgical parameters such as shear rate, shear time, temperature, rest time and size, distribution and morphology of the primary phase on the viscosity of the slurry needs in-depth characterization. In the present work, rheological behaviour of the semisolid aluminium alloy (A356) slurry is investigated by using a high temperature Searle type Rheometer using concentric cylinders. Three different types of experiment are carried out: isothermal test, continuous cooling test and steady state test. Continuous decrease in viscosity is observed with increasing shear rate at a fixed temperature (isothermal test). It is also found that the viscosity increases with decreasing temperature for a particular shear rate due to increasing solid fraction (continuous cooling test). Thixotropic nature of the slurry is confirmed from the hysteresis loops obtained during experimentation. Time dependence of slurry viscosity has been evaluated from the steady state tests. After a longer shearing time under isothermal conditions the starting dendritic structure of the said alloy is transformed into globular grains due to abrasion, agglomeration, welding and ripening.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lateral stress of LY-12 alummium alloy under plate impact shock loading was measured. Based on the measured data, the Hugoniot relation and shear strength were obtained. The result has demonstrated that the shear strenath of the tested material increases remarkably with the increasing longitudinal stress. This means that the assumption of constant shear strength usually adopted in shock stress calculation is not suitable for the present material.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of thermal exposure on the tensile properties of aluminium borate whisker reinforced 6061 aluminium alloy composite was studied. The interfacial reaction was investigated by TEM and the mechanical properties were studied using tensile tests. The results indicated that the interfacial reaction had an influence on the mechanical properties of the composite, so that the maxima of Young’s modulus and ultimate tensile strength of the composite after exposure at 500?C for 10 h were obtained for the optimum degree of interfacial reaction. The yield strength,however, was not only affected by the interfacial state but also by many other factors.