990 resultados para Aluminio-Análisis


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Tesis (Maestría en Ciencias de la Ingeniería Mecánica con Especialidad en Materiales) - U.A.N.L, 1998

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Tesis (Maestría en Ciencias de la Ingeniería Mecánica con Especialidad en Materiales) U.A.N.L.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Tesis (Maestro en Ciencias de la Ingeniería Mecánica con Especialidad en Materiales) UANL, 2001.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Tesis (Maestría en Ciencias con Especialidad en Química Analítica) U.A.N.L.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tesis (Maestro en Ciencias de la Ingeniería Mecánica con Especialidad en Materiales) - U.A.N.L, 2004

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Tesis (Maestría en Ciencias de la Ingeniería Mecánica con Especialidad en Materiales) UANL, 2012.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Generalmente los elementos estructurales metálicos de las aeronaves se ubican en zonas de carga crítica, en la mayoría de los casos, estos elementos son conformados mediante procesos de mecanizado. La vida a fatiga de estos componentes es una propiedad dinámica muy importante que puede verse intensamente afectada por las condiciones superficiales producidas durante el proceso de mecanizado. En este trabajo se lleva a cabo un primer estudio de la influencia de los parámetros de corte en la resistencia a la fatiga de piezas torneadas de la aleación de aluminio aeronáutico UNS A92024-T351. Se ha prestado especial atención a la relación con el acabado superficial evaluado a partir de la rugosidad media aritmética

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Uno de los retos actuales aún pendiente de lograr trabajando con espumas de aluminio, es el desarrollo de métodos de unión fácilmente reproducibles a nivel industrial que permitan la unión de espumas de aluminio entre sí o con otros componentes tipo pletinas, para así poder fabricar piezas de mayor tamaño o con formas complejas, a la vez que se conserven las propiedades y características principales de las espumas de aluminio, tanto en la zona principal de unión o cordón, como en la interfase y zona afectada térmicamente, que se encuentran anexa. Los actuales procesos de unión más utilizados con espumas de aluminio, se basan principalmente en adhesivos y uniones mecánicas. Estas soluciones a priori válidas, añaden problemas técnicos a determinadas aplicaciones de las espumas que frenan la completa integración de estos materiales en un entorno de fabricación flexible y global. Por esta razón, los actuales procesos de producción de las espumas de aluminio se restringen a determinadas ofertas hechas a la medida del cliente, no pudiendo atender por falta de soluciones, a una gran parte del potencial mercado de estos materiales. En el presente trabajo de investigación se han desarrollado y caracterizado diferentes métodos de unión de espumas de aluminio, en configuración a tope y de espumas de aluminio con pletinas en configuración a solape, basados en procesos por soldeo térmico. One of the current challenges even pending of being achieved working with aluminium foams, is the development of easily reproducible methods at industrial level that allow the joint of aluminium foams between them or with other elements as for example aluminium plates for making bigger pieces or with more complex forms, remaining simultaneously in the weld bead the properties and main characteristics of aluminium foam, so much in the joint area or interface, since in the affected closer thermal zone. Currently, the most used joint processes for applying to aluminium foams are based mainly on adhesives and mechanical joins. These solutions initially valid, add technical problems to certain aluminium foams applications, which stop the complete integration of these materials in a more flexible and global manufacture environment. For this reason, current aluminium foam manufacturing processes are restricted to certain offers done to a specific customer requirement, not being able to attend for lack of available solutions, to a great potential market of these materials. In the present work, different joint methods between aluminium foams and between aluminium foams and plates for butt and lap configurations have been developed and characterized based on thermal welding processes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Al considerar los mecanismos de unión entre dos elementos, metálicos o no, es cada vez más habitual referirse a la adhesión. El término adhesión se refiere a un complejo conjunto de fenómenos relacionados entre sí que están lejos de ser completamente entendidos y, por lo tanto, tiene sentido considerar la conveniencia de cualquier intento de predecir el comportamiento mediante el uso de métodos semi-empíricos. El empleo de adhesivos en las uniones entre materiales iguales o diferentes es un hecho que se ha implantado como sistema de unión en diferentes campos, tales como la industria metalúrgica, la industria de los medios de transporte (aviación, automóvil, transportes de viajeros por carretera urbanos e interurbanos, industria naval y, en los últimos años, transporte ferroviario), la electrónica y comunicaciones, la biomecánica, la nanotecnología, etc. Las funciones del adhesivo en la unión pueden ser variadas: desde soportar esfuerzos mecánicos, como lo hacen los materiales que une -adhesivos estructurales-, a, simplemente, dar continuidad a un objeto o a actuar como sellado y protección de un conjunto electrónico, con funciones aislantes o incluso conductoras. En todos los casos, el adhesivo realiza su función uniendo superficies. El estudio de cómo es y cómo se comporta esa superficie es fundamental para poder definir y diseñar los parámetros más adecuados de los elementos que participan en la unión. Pero el concepto de superficie no queda bien definido si no lo están sus características: así, la rugosidad, la energía superficial o la estructura y orientación cristalina van a definir el resultado final, junto con las propiedades del adhesivo empleado. Se ha comprobado que un tratamiento superficial realizado sobre un sustrato, puede realizar cambios superficiales no sólo a nivel topográfico, sino también a nivel químico y/o microestructural, lo que podría modificar la energía superficial del sustrato. En ensayos realizados en el propio laboratorio, se ha detectado que en casos en los que los valores de la rugosidad obtenida es la misma, la energía superficial del sustrato es diferente dependiendo del tipo de ataque, para la misma aleación del material. Se podría deducir, a priori, que la modificación cristalográfica conseguida influye, además de en la rugosidad, en las características termodinámicas de la misma. Si bien es cierto que la relación entre la rugosidad y la fuerza de adhesión ha sido ampliamente estudiada, la influencia de diferentes tipos de tratamientos superficiales, tanto en la rugosidad como en las características termodinámicas y en las fuerzas de adhesión, es un tema que produce discrepancias en diferentes autores. No todos los autores o investigadores en los mecanismos de la adhesión ven de igual manera la influencia de una u otra característica de la superficie, ni la posibilidad de aplicación de uno u otro criterio de valorización. Por otra parte, un factor de vital importancia en una buena adhesión es la viscosidad del adhesivo y su velocidad de curado. La aplicación de un adhesivo sobre el adherente implica que, si no hay una buena relación entre las energías superficiales de uno y otro, es decir si no se produce un buen mojado, la capacidad de penetración del adhesivo en los poros o microporos del adherente se reduce de forma sinérgica con la velocidad de curado del adhesivo, es decir, con el aumento de viscosidad. Los adhesivos presentan propiedades reológicas muy diferentes antes y después de su curado. En el momento de su aplicación se comportan como fluidos cuyo comportamiento reológico afecta, entre otras, a características tales como la procesabilidad, su ámbito de uso, la dosificación o la capacidad de relleno de holgura. Antes del curado, deben ser fluidos capaces de ser transportados hasta la superficie del sustrato y copiar su superficie realizando un buen mojado. Según va produciéndose el curado del adhesivo, éste va aumentando su viscosidad hasta comportarse como un sólido; una vez completado el curado, los adhesivos han de presentar propiedades mecánicas adecuadas a los requisitos de ensamblaje. En adhesión, la medida en la que un adhesivo es capaz de impregnar la superficie del sustrato sobre el cual se desea realizar la unión, realizar un contacto interfacial intimo y una buena penetración en las oquedades y rugosidades superficiales del sólido, se denomina mojado. Para que la adhesión sea buena, es condición indispensable que el mojado del sustrato por el adhesivo sea bueno. Para el estudio y cuantificación del mojado se utilizan medidas del ángulo de contacto que forma una gota de adhesivo depositada en el sólido tras esperar a que el sistema alcance el equilibrio. Dado el interés que tiene lo que ocurre en la interfase para alcanzar un mayor conocimiento de los procesos de adhesión, el objetivo principal de esta tesis es caracterizar morfológicamente la superficie de un adherente de aluminio para determinar la influencia que tiene en los parámetros que definen la unión adhesiva. Para ello se han marcado unos objetivos parciales que, fundamentalmente, son: • Caracterizar la superficie de un sustrato (aluminio) sometido a diferentes tratamientos superficiales, tanto mecánicos como químicos • Determinar la energía superficial del mismo sustrato después de los tratamientos superficiales mediante la medida de los ángulos de mojado • Analizar la influencia de la viscosidad en el mojado del sustrato, en función de la rugosidad • Determinar la aplicabilidad de la ecuación de Wenzel en función de la magnitud de la rugosidad • Validar los resultados de las características superficiales mediante la realización de ensayos de tracción Para alcanzar estos objetivos, se han empleado nueve tipos diferentes de tratamientos, en los que se ha buscado la obtención de muy diferentes acabados superficiales, razón por la que no todos los tratamientos que se han utilizado son de aplicación actual en la industria. Los tratamientos mecánicos han sido abrasivos de dos clases: • por rozamiento (Pulido y lijado con dos granulometrías diferentes) y • por impacto (Granallado y LSP) Los ataques químicos han sido, también, de dos tipos • Ácidos (HCl en dos concentraciones diferentes) y • Básicos (NaOH en dos concentraciones distintas) La caracterización superficial se ha realizado con el estudio de los parámetros de rugosidad superficiales, definidos en la normativa de rugosidad 3D, y con el estudio derivado de los análisis de la superficie por transformadas de Fourier La energía superficial se ha realizado mediante dos métodos: la determinación de la energía crítica, γc, por el método de Zisman y el cálculo de las componentes polar y dispersiva de la energía superficial mediante la aproximación de van Oss, Chaudhury y Good. Como estudio paralelo, se ha ensayado el efecto de la viscosidad del adhesivo y su velocidad de curado sobre unas muestras de aluminio con rugosidades diferentes. El estudio finaliza con las conclusiones que relacionan el tratamiento superficial y su influencia en el proceso de la adhesión, teniendo como elemento de referencia el efecto producido en las características topográficas y termodinámicas de la superficie.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[ES]En este trabajo se expone un estudio experimental del proceso de taladrado por fricción, más conocido como Friction Drilling y posterior roscado por laminación, en uniones de chapas de acero y aluminio, muy utilizadas en multitud de sectores, que se caracteriza por la ausencia de tuercas. La base de esta técnica es el calor producido por el rozamiento al entrar en contacto la herramienta rotativa con el material, causando el reblandecimiento del material, la fluencia y la deformación de éste. De este modo, se generará una copa cónica, que se roscará por laminación. En este trabajo se va a estudiar la viabilidad del proceso experimentalmente, obteniendo variables de entrada del proceso óptimas que generen una unión de calidad, atendiendo a diferentes aspectos. Sin embargo, se centra sobre todo en analizar la calidad de la unión en lo que se refiere a la compatibilidad de los materiales. Se estudiará la corrosión galvánica por una parte entre acero y aluminio y, por otra parte, entre acero, aluminio y el material del tornillo. Una vez concluido el trabajo, se espera obtener un proceso de unión de materiales disímiles sin tuerca, ofreciendo una mayor calidad que los procesos implementados actualmente.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[ES]En el presente trabajo, se pretende optimizar la unión atornillada de chapas de dos materiales disimilares (acero y aluminio) mediante un proceso no convencional, el taladrado por fricción. Dicho proceso está orientado a la calderería fina, sector en el cual tiene gran número de aplicaciones. Se comenzará con una serie de ensayos iníciales y se procederá a realizar pruebas sistemáticas. Se realizarán mediciones de temperaturas, momentos torsores y fuerzas, y se analizaran las tolerancias dimensionales generadas por el proceso para la elección de los parámetros óptimos. El documento se centrará en analizar de forma teórica el comportamiento mecánico de la unión y de los ensayos de tracción correspondientes. Esto servirá para realizar los futuros ensayos de calidad y posteriormente comparar los resultados con los de las uniones convencionales.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tesis (Maestro en Ciencias de la Ingeniería Mecánica con Especialidad en Materiales) UANL, 2000.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tesis (Maestría en Ciencias de la Ingeniería Mecánica con Especialidad en Materiales) - U.A.N.L, 2001

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Teis ( Maestro en Ciencias de Ingeniería Mecánica con Especialidad en materiales) U.A.N.L.