947 resultados para Alternative process
Resumo:
The objective of this work is to introduce and demonstrate the technical feasibility of the continuous flash fermentation for the production of butanol. The evaluation was carried out through mathematical modeling and computer simulation which is a good approach in such a process development stage. The process consists of three interconnected units, as follows: the fermentor, the cell retention system (tangential microfiltration) and the vacuum flash vessel (responsible for the continuous recovery of butanol from the broth). The efficiency of this process was experimentally validated for the ethanol fermentation, whose main results are also shown. With the proposed design the concentration of butanol in the fermentor was lowered from 11.3 to 7.8 g/l, which represented a significant reduction in the inhibitory effect. As a result, the final concentration of butanol was 28.2 g/l for a broth with 140 g/l of glucose. Solvents productivity and yield were, respectively, 11.7 g/l.h and 33.5 % for a sugar conversion of 95.6 %. Positive aspects about the flash fermentation process are the solvents productivity, the use of concentrated sugar solution and the final butanol concentration. The last two features can be responsible for a meaningful reduction in the distillation costs and result in environmental benefits due to lower quantities of wastewater generated by the process. © 2008 Berkeley Electronic Press. All rights reserved.
Resumo:
Organisations are constantly seeking new ways to improve operational efficiencies. This study investigates a novel way to identify potential efficiency gains in business operations by observing how they were carried out in the past and then exploring better ways of executing them by taking into account trade-offs between time, cost and resource utilisation. This paper demonstrates how these trade-offs can be incorporated in the assessment of alternative process execution scenarios by making use of a cost environment. A number of optimisation techniques are proposed to explore and assess alternative execution scenarios. The objective function is represented by a cost structure that captures different process dimensions. An experimental evaluation is conducted to analyse the performance and scalability of the optimisation techniques: integer linear programming (ILP), hill climbing, tabu search, and our earlier proposed hybrid genetic algorithm approach. The findings demonstrate that the hybrid genetic algorithm is scalable and performs better compared to other techniques. Moreover, we argue that the use of ILP is unrealistic in this setup and cannot handle complex cost functions such as the ones we propose. Finally, we show how cost-related insights can be gained from improved execution scenarios and how these can be utilised to put forward recommendations for reducing process-related cost and overhead within organisations.
Resumo:
The topic of bioenergy, biofuels and bioproducts remains at the top of the current political and research agenda. Identification of the optimum processing routes for biomass, in terms of efficiency, cost, environment and socio-economics is vital as concern grows over the remaining fossil fuel resources, climate change and energy security. It is known that the only renewable way of producing conventional hydrocarbon fuels and organic chemicals is from biomass, but the problem remains of identifying the best product mix and the most efficient way of processing biomass to products. The aim is to move Europe towards a biobased economy and it is widely accepted that biorefineries are key to this development. A methodology was required for the generation and evaluation of biorefinery process chains for converting biomass into one or more valuable products that properly considers performance, cost, environment, socio-economics and other factors that influence the commercial viability of a process. In this thesis a methodology to achieve this objective is described. The completed methodology includes process chain generation, process modelling and subsequent analysis and comparison of results in order to evaluate alternative process routes. A modular structure was chosen to allow greater flexibility and allowing the user to generate a large number of different biorefinery configurations The significance of the approach is that the methodology is defined and is thus rigorous and consistent and may be readily re-examined if circumstances change. There was the requirement for consistency in structure and use, particularly for multiple analyses. It was important that analyses could be quickly and easily carried out to consider, for example, different scales, configurations and product portfolios and so that previous outcomes could be readily reconsidered. The result of the completed methodology is the identification of the most promising biorefinery chains from those considered as part of the European Biosynergy Project.
Resumo:
Organisations are constantly seeking new ways to improve operational efficiencies. This research study investigates a novel way to identify potential efficiency gains in business operations by observing how they are carried out in the past and then exploring better ways of executing them by taking into account trade-offs between time, cost and resource utilisation. This paper demonstrates how they can be incorporated in the assessment of alternative process execution scenarios by making use of a cost environment. A genetic algorithm-based approach is proposed to explore and assess alternative process execution scenarios, where the objective function is represented by a comprehensive cost structure that captures different process dimensions. Experiments conducted with different variants of the genetic algorithm evaluate the approach's feasibility. The findings demonstrate that a genetic algorithm-based approach is able to make use of cost reduction as a way to identify improved execution scenarios in terms of reduced case durations and increased resource utilisation. The ultimate aim is to utilise cost-related insights gained from such improved scenarios to put forward recommendations for reducing process-related cost within organisations.
Resumo:
Traditionally, before flip chips can be assembled the dies have to be attached with solder bumps. This process involves the deposition of metal layers on the Al pads on the dies and this is called the under bump metallurgy (UBM). In an alternative process, however, Copper (Cu) columns can be used to replace solder bumps and the UBM process may be omitted altogether. After the bumping process, the bumped dies can be assembled on to the printed circuit board (PCB) by using either solder or conductive adhesives. In this work, the reliability issues of flip chips with Cu column bumped dies have been studied. The flip chip lifetime associated with the solder fatigue failure has been modeled for a range of geometric parameters. The relative importance of these parameters is given and solder volume has been identified as the most important design parameter for long-term reliability. Another important problem that has been studied in this work is the dissolution of protection metals on the pad and Cu column in the reflow process. For small solder joints the amount of Cu which dissolves into the molten solder after the protection layers have worn out may significantly affect solder joint properties.
Resumo:
Traditionally, before flip chips can be assembled the dies have to be attached with solder bumps. This process involves the deposition of metal layers on the Al pads on the dies and this is called the under bump metallurgy (UBM). In an alternative process, however, Copper (Cu) columns can be used to replace solder bumps and the UBM process may be omitted altogether. After the bumping process, the bumped dies can be assembled on to the printed circuit board (PCB) by using either solder or conductive adhesives. In this work, the reliability issues of flip chips with Cu column bumped dies have been studied. The flip chip lifetime associated with the solder fatigue failure has been modeled for a range of geometric parameters. The relative importance of these parameters is given and solder volume has been identified as the most important design parameter for long-term reliability. Another important problem that has been studied in this work is the dissolution of protection metals on the pad and Cu column in the reflow process. For small solder joints the amount of Cu which dissolves into the molten solder after the protection layers have worn out may significantly affect solder joint properties.
Resumo:
The aim of this highly novel study was to use hot-melt extrusion technology as an alternative process to enteric coating. In so doing, oral dosage forms displaying enteric properties may be produced in a continuous, rapid process, providing significant advantages over traditional pharmaceutical coating technology. Eudragit (R) L100-55, an enteric polymer, was pre-plasticized with triethyl citrate (TEC) and citric acid and subsequently dry-mixed with 5-aminosalicylic acid, a model active pharmaceutical ingredient (API), and an optional gelling agent (PVP (R) K30 or Carbopol (R) 971P). Powder blends were hot-melt extruded as cylinders, cut into tablets and characterised using powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC) and dissolution testing conducted in both pH 1.2 and pH 6.8 buffers. Increasing the concentration of TEC significantly lowered the glass transition temperature (T,) of Eudragit (R) L100-55 and reduced temperatures necessary for extrusion as well as the die pressure. Moreover, citric acid (17% w/w) was shown to act as a solid-state plasticizer. HME tablets showed excellent gastro-resistance, whereas milled extrudates compressed into tablets released more than 10% w/w of the API in acidic media. Drug release from HME tablets was dependent upon the concentration of TEC, the presence of citric acid, PVP K30, and Carbopol (R) 971P in the matrix, and pH of the dissolution media. The inclusion of an optional gelling agent significantly reduced the erosion of the matrix and drug release rate at pH 6.8; however, the enteric properties of the matrix were lost due to the formation of channels within the tablet. Consequently this work is both timely and highly innovative and identifies for the first time a method of producing an enteric matrix tablet using a continuous hot-melt extrusion process.
Resumo:
The formulation of BCS Class II drugs as amorphous solid dispersions has been shown to provide advantages with respect to improving the aqueous solubility of these compounds. While hot melt extrusion (HME) and spray drying (SD) are among the most common methods for the production of amorphous solid dispersions (ASDs), the high temperatures often required for HME can restrict the processing of thermally labile drugs, while the use of toxic organic solvents during SD can impact on end-product toxicity. In this study, we investigated the potential of supercritical fluid impregnation (SFI) using carbon dioxide as an alternative process for ASD production of a model poorly water-soluble drug, indomethacin (INM). In doing so, we produced ASDs without the use of organic solvents and at temperatures considerably lower than those required for HME. Previous studies have concentrated on the characterization of ASDs produced using HME or SFI but have not considered both processes together. Dispersions were manufactured using two different polymers, Soluplus and polyvinylpyrrolidone K15 using both SFI and HME and characterized for drug morphology, homogeneity, presence of drug-polymer interactions, glass transition temperature, amorphous stability of the drug within the formulation, and nonsink drug release to measure the ability of each formulation to create a supersaturated drug solution. Fully amorphous dispersions were successfully produced at 50% w/w drug loading using HME and 30% w/w drug loading using SFI. For both polymers, formulations containing 50% w/w INM, manufactured via SFI, contained the drug in the γ-crystalline form. Interestingly, there were lower levels of crystallinity in PVP dispersions relative to SOL. FTIR was used to probe for the presence of drug-polymer interactions within both polymer systems. For PVP systems, the nature of these interactions depended upon processing method; however, for Soluplus formulations this was not the case. The area under the dissolution curve (AUC) was used as a measure of the time during which a supersaturated concentration could be maintained, and for all systems, SFI formulations performed better than similar HME formulations.
Resumo:
O vinagre é obtido por dupla fermentação alcoólica e acética de substâncias de origem agrícola, possuindo cada tipo um flavour particular, função dos substratos e tecnologia usados, mantendo gosto sui generis ácido. A sua aptidão tecnológica viabiliza o fabrico de múltiplos produtos, macerando especiarias, plantas, etc, conduzindo ao enriquecimento da matriz, cujo perfil químico ganha complexidade e novas características sensoriais/funcionais. A picklagem fresh pack é um processo alternativo de conservação em vinagre, sem fermentação. Com vinagres de fermentação submergida, desenvolveram-se na ESAS (2009-2013), dois vinagres e um vinagrete com adições e um pickles de frutos doces, articulando ensaios tecnológicos, laboratoriais e sensoriais. Concebidos como produtos gourmet, pretendeu-se oferecer inovação e conveniência. Além do longo tempo de vida de prateleira, evidencia-se: 1) no vinagre de vinho branco com mirtilo –a mais-valia de preservar o fruto inteiro, por efeito de picklagem; 2) no vinagre agridoce, de vinho tinto Touriga Nacional com mel e especiarias –uma tónica agridoce equilibrada e actual; 3) no vinagrete de laranja aromatizado –a complexidade aromática aliada à sensação de frescura na boca; 4) no pickles fresh pack de pera-abacaxi agridoce –novidade e dupla utilização: consumida a fruta, a infusão utiliza-se como vinagre de mesa (aptidão incomum em pickles).---Vinegar is obtained by double fermentation alcoholic and acetic of substances from agricultural origin, each type having one particular flavor, due to the technology and the substrates used, while maintaining sui generis acid taste. Its technological aptitude enables the manufacture of multiple products, macerating spices, plants, leading to the enrichment of the matrix whose chemical profile becomes increasingly complex with new sensory/functional characteristics. The fresh pack process is an alternative process of pickling, without fermentation. With submerged fermentation vinegar, two vinegars and a vinaigrette with additions and pickled sweet fruits were developed in ESAS (2009-2013), articulating technological, laboratory and sensory tests. Designed as gourmet products, intended to provide innovation and convenience. In addition to the long shelf life, stands out: 1) in white wine vinegar with blueberries – the added value of preserving the whole fruit by pickling effect, 2) in bittersweet red wine vinegar, Touriga Nacional with honey and spices – the sweet and sour taste, balanced and fashionable; 3) in flavored orange vinaigrette – the aromatic complexity coupled with the fresh sensation in the mouth, 4) in the fresh pack sweet and sour pickles with pear-pineapple – the innovation and dual-use: consumed the fruit, infusion is used as table vinegar (unusual application for pickles).
Resumo:
La production biologique d'hydrogène (H2) représente une technologie possible pour la production à grande échelle durable de H2 nécessaire pour l'économie future de l'hydrogène. Cependant, l'obstacle majeur à l'élaboration d'un processus pratique a été la faiblesse des rendements qui sont obtenus, généralement autour de 25%, bien en sous des rendements pouvant être atteints pour la production de biocarburants à partir d'autres processus. L'objectif de cette thèse était de tenter d'améliorer la production d'H2 par la manipulation physiologique et le génie métabolique. Une hypothèse qui a été étudiée était que la production d'H2 pourrait être améliorée et rendue plus économique en utilisant un procédé de fermentation microaérobie sombre car cela pourrait fournir la puissance supplémentaire nécessaire pour une conversion plus complète du substrat et donc une production plus grande d'H2 sans l'aide de l'énergie lumineuse. Les concentrations optimales d’O2 pour la production de H2 microaérobie ont été examinées ainsi que l'impact des sources de carbone et d'azote sur le processus. La recherche présentée ici a démontré la capacité de Rhodobacter capsulatus JP91 hup- (un mutant déficient d’absorption-hydrogénase) de produire de l'H2 sous condition microaérobie sombre avec une limitation dans des quantités d’O2 et d'azote fixé. D'autres travaux devraient être entrepris pour augmenter les rendements d'H2 en utilisant cette technologie. De plus, un processus de photofermentation a été créé pour améliorer le rendement d’H2 à partir du glucose à l'aide de R. capsulatus JP91 hup- soit en mode non renouvelé (batch) et / ou en conditions de culture en continu. Certains défis techniques ont été surmontés en mettant en place des conditions adéquates de fonctionnement pour un rendement accru d'H2. Un rendement maximal de 3,3 mols de H2/ mol de glucose a été trouvé pour les cultures en batch tandis que pour les cultures en continu, il était de 10,3 mols H2/ mol de glucose, beaucoup plus élevé que celui rapporté antérieurement et proche de la valeur maximale théorique de 12 mols H2/ mol de glucose. Dans les cultures en batch l'efficacité maximale de conversion d’énergie lumineuse était de 0,7% alors qu'elle était de 1,34% dans les cultures en continu avec un rendement de conversion maximum de la valeur de chauffage du glucose de 91,14%. Diverses autres approches pour l'augmentation des rendements des processus de photofermentation sont proposées. Les résultats globaux indiquent qu'un processus photofermentatif efficace de production d'H2 à partir du glucose en une seule étape avec des cultures en continu dans des photobioréacteurs pourrait être développé ce qui serait un processus beaucoup plus prometteur que les processus en deux étapes ou avec les co-cultures étudiés antérieurément. En outre, l'expression hétérologue d’hydrogenase a été utilisée comme une stratégie d'ingénierie métabolique afin d'améliorer la production d'H2 par fermentation. La capacité d'exprimer une hydrogénase d'une espèce avec des gènes de maturation d'une autre espèce a été examinée. Une stratégie a démontré que la protéine HydA orpheline de R. rubrum est fonctionnelle et active lorsque co-exprimée chez Escherichia coli avec HydE, HydF et HydG provenant d'organisme différent. La co-expression des gènes [FeFe]-hydrogénase structurels et de maturation dans des micro-organismes qui n'ont pas une [FeFe]-hydrogénase indigène peut entraîner le succès dans l'assemblage et la biosynthèse d'hydrogénase active. Toutefois, d'autres facteurs peuvent être nécessaires pour obtenir des rendements considérablement augmentés en protéines ainsi que l'activité spécifique des hydrogénases recombinantes. Une autre stratégie a consisté à surexprimer une [FeFe]-hydrogénase très active dans une souche hôte de E. coli. L'expression d'une hydrogénase qui peut interagir directement avec le NADPH est souhaitable car cela, plutôt que de la ferrédoxine réduite, est naturellement produit par le métabolisme. Toutefois, la maturation de ce type d'hydrogénase chez E. coli n'a pas été rapportée auparavant. L'opéron hnd (hndA, B, C, D) de Desulfovibrio fructosovorans code pour une [FeFe]-hydrogénase NADP-dépendante, a été exprimé dans différentes souches d’E. coli avec les gènes de maturation hydE, hydF et hydG de Clostridium acetobutylicum. L'activité de l'hydrogénase a été détectée in vitro, donc une NADP-dépendante [FeFe]-hydrogénase multimérique active a été exprimée avec succès chez E. coli pour la première fois. Les recherches futures pourraient conduire à l'expression de cette enzyme chez les souches de E. coli qui produisent plus de NADPH, ouvrant la voie à une augmentation des rendements d'hydrogène via la voie des pentoses phosphates.
Resumo:
One of the waste generated during the drilling of oil wells are gravel which are impregnated of drilling fluid. This residue consists of highly toxic chemicals, including toxic metals. This study suggests an alternative process to the treatment of this waste, by incorporating it the form of raw material in the ceramic matrix , and by solidification and stabilize the metals present, Aluminum (Al), Iron (Fe), Manganese (Mn) and Zinc (Zn). The raw materials were characterized by the techniques of X ray fluorescence (FRX), X ray diffraction (DRX), laser granulometry (GL), thermogravimetry (TG) and differential thermal analysis (ADT). To evaluate the percentage of gravel effect the environmental and technological properties were obtained from formulations containing 0, 10 and 20 % by weight of gravel in the ceramic matrix. After sintering at temperatures 1080, 1120 and 1160 °C, the samples were tested for water absorption, the linear shrinkage firing, voltage of rupture and solubility. The results obtained showed that the stabilization by solidification, is a viable alternative to safe disposal of waste drilling. Ceramics products can be used in the manufacture of solid bricks
Resumo:
This study proposes a method for decontamination of acid drainage water from a uranium mine, as an alternative process to lime treatment. The research embodied the recovery of uranium with an ion-exchange resin, treatment of effluent resin with lime, or with inorganic adsorbents and biosorbents. The uranium decontamination level using the resin process was 94% and allowed the recovery of this element as a commercial product. Among the inorganic adsorbents studied, phosphogypsum was effective for Ra-226, Ra-228, and Pb-210 removal. Among the biosorbents, Sargassum sp.was superior in relation to its specific capacity to accumulate and remove Ra-226.
Resumo:
Modifications of glass surfaces were studied after exposure of samples to an atmosphere resulting from the decomposition of molten KNO3. The diffusion coefficient of K+ ions migrating into the surfaces of float glass and synthesized glasses doped with up to 5 wt% SnO2 was calculated by the Boltzmann-Matano technique. The Vickers hardness and the refractive index increase with exposure time. Infrared spectra show that the migration of K+ is responsible for an increase in the number of non-bridging oxygens in the exposed samples. The spectra of the synthesized glasses present evidences that their surfaces undergo crystallization during the exposure. All results lead to the conclusion that the presence of tin in the glasses hinders the diffusion of K+ ions, thus affecting the Vickers hardness, the refractive index and the infrared spectra. It is shown that the exposure method can be used as an alternative process to promote the K+ migration into glass surfaces. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)