805 resultados para Alternating-current


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The design of supplementary damping controllers to mitigate the effects of electromechanical oscillations in power systems is a highly complex and time-consuming process, which requires a significant amount of knowledge from the part of the designer. In this study, the authors propose an automatic technique that takes the burden of tuning the controller parameters away from the power engineer and places it on the computer. Unlike other approaches that do the same based on robust control theories or evolutionary computing techniques, our proposed procedure uses an optimisation algorithm that works over a formulation of the classical tuning problem in terms of bilinear matrix inequalities. Using this formulation, it is possible to apply linear matrix inequality solvers to find a solution to the tuning problem via an iterative process, with the advantage that these solvers are widely available and have well-known convergence properties. The proposed algorithm is applied to tune the parameters of supplementary controllers for thyristor controlled series capacitors placed in the New England/New York benchmark test system, aiming at the improvement of the damping factor of inter-area modes, under several different operating conditions. The results of the linear analysis are validated by non-linear simulation and demonstrate the effectiveness of the proposed procedure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There remains a lack of solid evidence showing whether transcranial stimulation with weak alternating current (transcranial alternating current stimulation, tACS) can in fact induce significant neurophysiological effects. Previously, a study in which tACS was applied for 2 and 5 min with current density = 0.16-0.25 A/m(2) was unable to show robust effects on cortical excitability. Here we applied tACS at a significantly higher current density (0.80 A/m(2)) for a considerably longer duration (20 min) and were indeed able to demonstrate measurable changes to cortical excitability. Our results show that active 15 Hz tACS of the motor cortex (electrodes placed at C3 and C4) significantly diminished the amplitude of motor evoked potentials and decreased intracortical facilitation (ICF) as compared to baseline and sham stimulation. In addition, we show that our method of sham tACS is a reliable control condition. These results support the notion that AC stimulation with weak currents can induce significant changes in brain excitability; in this case, 15 Hz tACS led to a pattern of inhibition of cortical excitability. We propose that tACS may have a dampening effect on cortical networks and perhaps interfere with the temporal and spatial summation of weak subthreshold electric potentials. (C) 2010 Elsevier Ireland Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A hybrid magnetic instrumentation to detect a magnetic field from a permanent magnet, and to detect magnetic markers and tracers using alternating current biosusceptometry (ACB) is discussed. The instrument was used to in vitro evaluation of the esophageal transit time. The sensitivity between both magnetic methods was compared, showing sensitivity for in vivo applications. © 2013 Springer-Verlag.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanoparticles are fascinating where physical and optical properties are related to size. Highly controllable synthesis methods and nanoparticle assembly are essential [6] for highly innovative technological applications. Among nanoparticles, nonhomogeneous core-shell nanoparticles (CSnp) have new properties that arise when varying the relative dimensions of the core and the shell. This CSnp structure enables various optical resonances, and engineered energy barriers, in addition to the high charge to surface ratio. Assembly of homogeneous nanoparticles into functional structures has become ubiquitous in biosensors (i.e. optical labeling) [7, 8], nanocoatings [9-13], and electrical circuits [14, 15]. Limited nonhomogenous nanoparticle assembly has only been explored. Many conventional nanoparticle assembly methods exist, but this work explores dielectrophoresis (DEP) as a new method. DEP is particle polarization via non-uniform electric fields while suspended in conductive fluids. Most prior DEP efforts involve microscale particles. Prior work on core-shell nanoparticle assemblies and separately, nanoparticle characterizations with dielectrophoresis and electrorotation [2-5], did not systematically explore particle size, dielectric properties (permittivity and electrical conductivity), shell thickness, particle concentration, medium conductivity, and frequency. This work is the first, to the best of our knowledge, to systematically examine these dielectrophoretic properties for core-shell nanoparticles. Further, we conduct a parametric fitting to traditional core-shell models. These biocompatible core-shell nanoparticles were studied to fill a knowledge gap in the DEP field. Experimental results (chapter 5) first examine medium conductivity, size and shell material dependencies of dielectrophoretic behaviors of spherical CSnp into 2D and 3D particle-assemblies. Chitosan (amino sugar) and poly-L-lysine (amino acid, PLL) CSnp shell materials were custom synthesized around a hollow (gas) core by utilizing a phospholipid micelle around a volatile fluid templating for the shell material; this approach proves to be novel and distinct from conventional core-shell models wherein a conductive core is coated with an insulative shell. Experiments were conducted within a 100 nl chamber housing 100 um wide Ti/Au quadrapole electrodes spaced 25 um apart. Frequencies from 100kHz to 80MHz at fixed local field of 5Vpp were tested with 10-5 and 10-3 S/m medium conductivities for 25 seconds. Dielectrophoretic responses of ~220 and 340(or ~400) nm chitosan or PLL CSnp were compiled as a function of medium conductivity, size and shell material.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Medical microdevices have gained popularity in the past few decades because they allow the medical laboratory to be taken out into the field and for disease diagnostics to happen with a smaller sample volume, at a lower cost and much faster. Blood is the human body's most readily available and informative diagnostic fluid because of the wealth of information it provides about the body's general health including enzymatic, proteomic and immunological states. The purpose of this project is to optimize operating conditions and study ABO-Rh erythrocytes dielectrophoretic responses to alternating current electric signals. The end goal of this project is the creation of a relatively inexpensive microfluidic device, which can be used for the ABO-Rh typing of a blood sample. This dissertation presents results showing how blood samples of a known ABO- Rh blood type exhibit differing behavior to the same electrical stimulus based on their blood type. The first panel of donors and experiments, presented in Chapter 4 occurred when a sample of known blood type was injected into a microdevice with a T-shaped electrode configuration and the erythorcytes were found to rupture at a rate specific to their ABO-Rh blood type. The second set of experiments, presented in Chapter 5, were originally published in Electrophoresis in 20111. Novel in this work was the discovery that treatment of human erythrocytes with β-galactosidase successfully removed ABO surface antigens such that native A and B blood no longer agglutinated with the proper antibodies. This work was performed in a medium of conductivity 0.9S/m which is close to the measured conductivity of pooled plasma (~1.1S/m). The ability to perform dielectrophoresis experiments at physiological conductivities conditions is advantageous for future portable devices because the device/instrument would not need to store dilution buffers. The final results of this project, presented in Chapter 6, explore the entire dielectrophoretic spectra of the ABO-Rh erythrocytes including the cross-over frequency and the magnitudes of the positive or negative dielectrophoretic response. These were completed at lower medium conductivities of 0.1S/m and 0.01-0.04S/m. These results show that by using the sweep function built into the Agilent alternating current generator it is possible to explore how a single group of blood cells will react to rapid changes in frequency and will provide the user with curve that can be matched the theoretical dielectrophoretic response curves. As a whole this project shows that it is possible to distinguish human erythrocytes by their ABO-Rh blood type via three different dielectrophoretic methods. This work builds on the foundation of that it is possible to distinguish healthy from infected cells2-7, similar cell types1,7-14 and other work regarding the dielectrophoresis of human erythrocytes1,10,11. This work has implications in both medical diagnostics and future dielectrophoretic work because it has shown that ABO-Rh blood type is now a factor, which must be identified when working with a human blood sample. It also shows that the creation of a microfluidic device that subjects human erythrocytes to a dielectrophoretic impulse and then exports an ABO-Rh blood type is a near future possibility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently transcranial electric stimulation (tES) has been widely used as a mean to modulate brain activity. The modulatory effects of tES have been studied with the excitability of primary motor cortex. However, tES effects are not limited to the site of stimulation but extended to other brain areas, suggesting a need for the study of functional brain networks. Transcranial alternating current stimulation (tACS) applies sinusoidal current at a specified frequency, presumably modulating brain activity in a frequency-specific manner. At a behavioural level, tACS has been confirmed to modulate behaviour, but its neurophysiological effects are still elusive. In addition, neural oscillations are considered to reflect rhythmic changes in transmission efficacy across brain networks, suggesting that tACS would provide a mean to modulate brain networks. To study neurophysiological effects of tACS, we have been developing a methodological framework by combining transcranial magnetic stimulation (TMS), EEG and tACS. We have developed the optimized concurrent tACS-EEG recording protocol and powerful artefact removal method that allow us to study neurophysiological effects of tACS. We also established the concurrent tACS-TMS-EEG recording to study brain network connectivity while introducing extrinsic oscillatory activity by tACS. We show that tACS modulate brain activity in a phase-dependent manner. Our methodological advancement will open an opportunity to study causal role of oscillatory brain activity in neural transmissions in cortical brain networks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Teachers are deeply concerned on how to be more effective in our task of teaching. We must organize the contents of our specific area providing them with a logical configuration, for which we must know the mental structure of the students that we have in the classroom. We must shape this mental structure, in a progressive manner, so that they can assimilate the contents that we are trying to transfer, to make the learning as meaningful as possible. In the generative learning model, the links before the stimulus delivered by the teacher and the information stored in the mind of the learner requires an important effort by the student, who should build new conceptual meanings. That effort, which is extremely necessary for a good learning, sometimes is the missing ingredient so that the teaching-learning process can be properly assimilated. In electrical circuits, which we know are perfectly controlled and described by Ohm's law and Kirchhoff's two rules, there are two concepts that correspond to the following physical quantities: voltage and electrical resistance. These two concepts are integrated and linked when the concept of current is presented. This concept is not subordinated to the previous ones, it has the same degree of inclusiveness and gives rise to substantial relations between the three concepts, materializing it into a law: The Ohm, which allows us to relate and to calculate any of the three physical magnitudes, two of them known. The alternate current, in which both the voltage and the current are reversed dozens of times per second, plays an important role in many aspects of our modern life, because it is universally used. Its main feature is that its maximum voltage is easily modifiable through the use of transformers, which greatly facilitates its transfer with very few losses. In this paper, we present a conceptual map so that it is used as a new tool to analyze in a logical manner the underlying structure in the alternate current circuits, with the objective of providing the students from Sciences and Engineering majors with another option to try, amongst all, to achieve a significant learning of this important part of physics.