980 resultados para Alpha-msh
Resumo:
The current study aims to ascertain the fate of the melanocyte stimulating hormone (MSH) receptor and its ligand [Nle(4), D-Phe(7)]alpha-MsH (NDP-MSH) following binding to murine B16 melanoma cells. Cells were incubated with [I-125]-NDP-MSH for up to 180 min and binding, internalization and degradation determined. Intracellular trafficking of the radiolabel was assessed !using Percoll density gradient centrifugation of homogenized cells. Receptor down-regulation and receptor mRNA levels were also measured over 96 hr after exposure to 1 mu M ligand. NDP-MSH accumulation increased with time in a temperature-dependent manner and was inhibited by excess peptide. The ligand was rapidly internalized and translocated to the lysosomal compartment where it was degraded. Internalization was accompanied by a loss or down-regulation of cell surface receptors, suggesting internalization of the NDP-MSH-receptor complex. No recycling of the receptors between the plasma membrane and intracellular compartments could be detected in this cell-hue. Approximately 15% of the surface receptors were resistant to down-regulation, possibly indicating receptor heterogeneity. Down-regulation persisted ibr up to 96 hr and was accompanied by a decrease in MSH receptor mRNA levels 48 hr after treatment. However, before this time, transcript levels were the same in treated and control cells. In contrast to what was seen with NDP-MSH, cell surface receptors removed with trypsin wc:re rapidly replaced. These results show that NDP-MSH not only induced MSH receptor :internalization but also inhibited receptor turnover, resulting in a prolonged down-regulation. It is concluded that, in B16 cells, the MSH receptor undergoes ligand-dependent internalization, resulting in a prolonged down-regulation. Copyright (C) 1996 Elsevier Science Ltd
Time of injection determines the effect of alpha-MSH antiserum on DA neurons in psychological stress
Resumo:
Male rats were subjected to "psychological stress" which consisted in 10 sec footshock on the first day followed 24 hr later by a 10 sec stay in the experimental chamber without shock. Intravenous antiserum against alpha-MSH markedly changed the functional state of mesencephalic and hypothalamic DA neurons (assessed by histochemical microfluorimetry) when administered before the second session but not when given before the first session. These observations reveal an interesting parallelism in the temporal characteristics of the effects of alpha-MSH on avoidance behavior and central DA systems.
Resumo:
Release of alpha-MSH from rat hypothalamic slices was characterized with respect to ionic requirements and possible diurnal variations using a sensitive radioimmunoassay. Addition of 47 mM KCl to the superfusion medium resulted in a twofold increase in alpha-MSH functions as a neurotransmitter or neuromodulator in the hypothalamus. Both spontaneous and potassium-induced alpha-MSH release compared to spontaneous release. Removal of calcium from the superfusion medium abolished the potassium-evoked release of alpha-MSH. This supports the concept that alpha-MSH release were related to diurnal variation. Marked release from the slices was observed at 10.10 h, corresponding to a peak in the alpha-MSH concentration in the hypothalamus [18] and to a lower levels of alpha-MSH in the blood. Contrarily, no significant release from the hypothalamus was obtained at 17.00 h when hypothalamic alpha-MSH content was low, but blood levels exhibited a peak. These findings suggest that there are differences in the regulation of the alpha-MSH from the pituitary and that in the hypothalamus.
Resumo:
The appearance of immunoreactive alpha-melanotropin (alpha-MSH) and adrenocorticotropin (ACTH) during development was studied in 3 areas of the rat brain--cerebral hemispheres, midbrain and hindbrain--from embryonic day (ED) 13-14 until day 21 postnatally. The alpha-MSH content in vivo was always highest in the midbrain; a peak content at birth was followed by a transient decline and a later, higher plateau from postnatal day 7 onwards. The alpha-MSH content in the cerebral hemispheres rose progressively after birth reaching a peak at day 21. Values in the hindbrain rose at day 3 and changed relatively sue taken at ED 15-16 showed a gradual increase in alpha-MSH content over the 20 days. The alpha-MSH content of hindbrain cultures remained at constant low levels, while no alpha-MSH was detectable in cerebral hemisphere cultures. ACTH appeared in vivo earlier than alpha-MSH and was detectable in embryonic brains at ED 13-14. A transient rise was seen at ED 17-18 and major peaks at birth, day 2 and day 3, in the midbrain, hemispheres and hindbrain, respectively. In vitro, the ACTH content increased in all brain regions during the first 5 days in culture and showed no further change thereafter. Comparisons of the in vivo and in vitro development of alpha-MSH and ACTH demonstrate that (i) these two peptide systems are independent in respect to their localization and time of appearance; (ii) they undergo maturation both in vivo and in vitro; (iii) epigenetic factors, such as interactions with other neurotransmitter systems may modulate the developmental pattern of these two peptides.
Resumo:
Melanin granule (melanosome) dispersion within Xenopus laevis melanophores is evoked either by light or alpha-MSH. We have previously demonstrated that the initial biochemical steps of light and alpha-MSH signaling are distinct, since the increase in cAMP observed in response to alpha-MSH was not seen after light exposure. cAMP concentrations in response to alpha-MSH were significantly lower in cells pre-exposed to light as compared to the levels in dark-adapted melanophores. Here we demonstrate the presence of an adenylyl cyclase (AC) in the Xenopus melanophore, similar to the mammalian type IX which is inhibited by Ca(2+)-calmodulin-activated phosphatase. This finding supports the hypothesis that the cyclase could be negatively modulated by a light-promoted Ca(2+) increase. In fact, the activity of calcineurin PP2B phosphatase was increased by light, which could result in AC IX inhibition, thus decreasing the response to alpha-MSH. St-Ht31, a disrupting agent of protein kinase A (PKA)-anchoring kinase A protein (AKAP) complex totally blocked the melanosome dispersing response to alpha-MSH, but did not impair the photo-response in Xenopus melanophores. Sequence comparison of a melanophore AKAP partial clone with GenBank sequences showed that the anchoring protein was a gravin-like adaptor previously sequenced from Xenopus non-pigmentary tissues. Co-immunoprecipitation of Xenopus AKAP and the catalytic subunit of PKA demonstrated that PKA is associated with AKAP and it is released in the presence of alpha-MSH. We conclude that in X laevis melanophores, AKAP12 (gravin-like) contains a site for binding the inactive PKA thus compartmentalizing PKA signaling and also possesses binding sites for PKC. Light diminishes alpha-MSH-induced increase of cAMP by increasing calcineurin (PP2B) activity, which in turn inhibits adenylyl cyclase type IX, and/or by activating PKC, which phosphorylates the gravin-like molecule, thus destabilizing its binding to the cell membrane. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The contribution of the UV component of sunlight to the development of skin cancer is widely acknowledged, although the molecular mechanisms that are disrupted by UV radiation (UVR) resulting in the loss of normal growth controls of the epidermal stem cell keratinocytes and melanocytes is still poorly understood. alpha-Melanocyte stimulating hormone (alpha-MSH), acting via its receptor MC1, has a key role in skin pigmentation and the melanizing response after exposure to UVR. The cell cycle inhibitor p16/CDKN2A also appears to have an important function in a cell cycle checkpoint response in skin after exposure to UVR. Both of these genes have been identified as risk factors in skin cancer, MC1R variants are associated with increased risk to both melanoma and nonmelanoma skin cancers, and p16/CDKN2A with increased risk of melanoma. Here we demonstrate that the increased expression of p16 after exposure to sub-erythemal doses of UVR is potentiated by alpha-MSH, a ligand for MC1R, and this effect is mimicked by cAMP, the intracellular mediator of alpha-MSH signaling via the MC1 receptor. This link between p16 and MC1R may provide a molecular basis for the increased skin cancer risk associated with MC1R polymorphisms.
Resumo:
The tubero-infundibular and nigrostriatal DA neurone systems of rats respond to systemic (i.p.) injection of alpha-MSH (2-100 microgram/kg). The response of the tubero-infundibular (arcuate) DA neurones, an increase in cellular fluorescence intensity which can be interpreted as a sign of increased neuronal activity, is essentially the same in males, estrogen-progesterone-pretreated ovariectomized females and hypophysectomized males, whereas the type of response elicited by alpha-MSH in the nigral DA neurones depends upon the hormonal state of the animal. Differences between the two DA neurone groups exist also with regard to the effects of peptide fragments containing the two active sites of the alpha-MSH molecule. Results of lesion experiments in the lower brainstem (area postrema) and of blockade of muscarinic mechanisms by atropine further point to differences in the mechanisms underlying the peptide effects on the two neurone systems. The reaction of the tubero-infundibular DA system (which controls the pars intermedia of the pituitary) can be considered to reflect the activation of a feedback mechanism on MSH secretion, while the functional counterpart of the changes observed in the nigral system remains unknown at the present time.
Resumo:
Alpha-, beta- and gamma-melanocyte stimulating hormones (MSHs) are peptides derived from the ACTH precursor, pro-opiomelanocortin. All three peptides have been highly conserved throughout evolution but their exact biological function in mammals is still largely obscure. In recent years, there has been a surge of interest in alpha-MSH and its role in the regulation of feeding. Gamma-MSH by contrast has been shown to be involved in the regulation of adrenal steroidogenesis and also has effects on the cardiovascular and renal systems. This review will provide an overview of the role that gamma-MSH peptides play in the regulation of adrenal steroidogenesis. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
The effect of tubero-infundibular dopaminergic neurons (TIDA) on the release of prolactin (PRL) and alpha-melanocyte stimulating hormone (alpha-MSH) was studied in median eminence-lesioned (MEL) male rats (N = 6-28). Plasma PRL and alpha-MSH levels were significantly elevated 2 (86.1 +/- 19.8 and 505.1 +/- 19.1 ng/ml), 4 (278.7 +/- 15.5 and 487.4 +/- 125.1 ng/ml), 7 (116.2 +/- 16.2 and 495.8 +/- 62.6 ng/ml) and 14 (247.3 +/- 26.1 and 448.4 +/- 63.8 ng/ml) days after MEL when compared to sham-operated control animals (55.5 +/- 13.4 and 56.2 +/- 6.1 ng/ml, respectively). MEL altered plasma PRL and alpha-MSH levels in a differential manner, with a 1.5-to 5.0-fold increase in PRL and an 8.0-to 9.0-fold increase in alpha-MSH. The increase of alpha-MSH levels occurred abruptly and remained constant from days 2 to 14. These observations indicate that TIDA plays an important role in the pituitary release of PRL and alpha-MSH and provide evidence that the release of the two hormones occurs in a differential manner.
Resumo:
Melasma is a common acquired symmetrical hypermelanosis characterized by irregular light- to dark-brown macules on sun-exposed skin areas. The literature shows few studies on its physiopathogeny. However, changes in α-melanocyte stimulating hormone (α-MSH) secretion and melanocortin-1 receptor (MC1-R) expression may play a role to trigger this condition. Biopsies were taken from both melasma skin and adjacent perilesional normal skin of 44 patients. The biopsies were submitted for hematoxylin and eosin and Fontana-Masson staining and immunohistochemistry with Melan-A, α-MSH, and MC1-R, and processed for transmission electron microscopy. In some cases, they were submitted to MC1-R gene expression analysis by real-time polymerase chain reaction. Increased lymphohistiocytic infiltrate and solar elastosis, higher epidermal melanin were observed in melasma skin. Electron microscopy revealed a greater number of mature melanosomes in keratinocytes and melanocytes, and more prominent cytoplasmic organelles in melasma skin. There was no difference in melanocyte number between areas. However, melanocytes were larger and more dendritic in melasma skin. Immunohistochemistry with α-MSH and MC1-R showed significant labeling in melasmic epidermis but MC1-R messenger ribonucleic acid (RNAm) did not show significant quantitative difference between melasma and normal skin. © 2010 by Lippincott Williams & Wilkins.
Resumo:
Background: Exposure to ultraviolet (UV) radiation causes various forms of acute and chronic skin damage, including immunosuppression, inflammation, premature aging and photodamage. Furthermore, it induces the generation of reactive oxygen species, produces proinflammatory cytokines and melanocyte-stimulating hormone (MSH) and increases tyrosinase activity. The aim of this study was to evaluate the potential photoprotective effects of Rheum rhaponticum L. rhizome extract on human UV-stimulated melanocytes.Methods: The effects of Rheum rhaponticum rhizome extract on tyrosine kinase activity, and on interleukin-1α (IL-1α), tumour necrosis factor α (TNF-α), and α-MSH production in human epidermal melanocytes were evaluated under UV-stimulated and non-stimulated conditions. Antioxidant activity was evaluated by lipid peroxidation and 1,1-dyphenyl-2-picryl-hydrazyl (DPPH) assays, while anti-tyrosinase activity was evaluated by the mushroom tyrosinase method.Results: Rheum rhaponticum L. rhizome extract showed in vitro antioxidant properties against lipid peroxidation, free radical scavenging and anti-tyrosinase activities, and inhibited the production of IL-1α, TNF-α, α-MSH, and tyrosine kinase activity in melanocytes subjected to UV radiation.Conclusions: These results support the inclusion of Rheum rhaponticum L. rhizome extract into cosmetic, sunscreen and skin care products for the prevention or reduction of photodamage. © 2013 Silveira et al; licensee BioMed Central Ltd.
Resumo:
alpha-Melanocyte-stimulating hormone (alpha-MSH) is a potent inhibitory agent in all major forms of inflammation. To identify a potential mechanism of antiinflammatory action of alpha-MSH, we tested its effects on production of nitric oxide (NO), believed to be a mediator common to all forms of inflammation. We measured NO and alpha-MSH production in RAW 264.7 cultured murine macrophages stimulated with bacterial lipopolysaccharide and interferon gamma. alpha-MSH inhibited production of NO, as estimated from nitrite production and nitration of endogenous macrophage proteins. This occurred through inhibition of production of NO synthase II protein; steady-state NO synthase II mRNA abundance was also reduced. alpha-MSH increased cAMP accumulation in RAW cells, characteristic of alpha-MSH receptors in other cell types. RAW cells also expressed mRNA for the primary alpha-MSH receptor (melanocortin 1). mRNA for proopiomelanocortin, the precursor molecular of alpha-MSH, was expressed in RAW cells, and tumor necrosis factor alpha increased production and release of alpha-MSH. These results suggest that the proinflammatory cytokine tumor necrosis factor alpha can induce macrophages to increase production of alpha-MSH, which then becomes available to act upon melanocortin receptors on the same cells. Such stimulation of melanocortin receptors could modulate inflammation by inhibiting the production of NO. The results suggest that alpha-MSH is an autocrine factor in macrophages which modulates inflammation by counteracting the effects of proinflammatory cytokines.
Resumo:
Adrenocorticotropin (ACM) and alpha-melanocyte stimulating hormone (alpha-MSH) are peptides which present many physiological effects related to pigmentation, motor and sexual behavior, learning and memory, analgesia, anti-inflammatory and antipyretic processes. The 13 amino acid residues of alpha-MSH are the same initial sequence of ACM and due to the presence of a tryptophan residue in position 9 of the peptide chain, fluorescence techniques could be used to investigate the conformational properties of the hormones in different environments and the mechanisms of interaction with biomimetic systems like sodium dodecyl sulphate (SDS) micelles, sodium dodecyl sulphate-poly(ethylene oxide) (SDS-PEO) aggregates and neutral polymeric micelles. In buffer solution, fluorescence parameters were typical of peptides containing tryptophan exposed to the aqueous medium and upon addition of surfactant and polymer molecules, the gradual change of those parameters demonstrated the interaction of the peptides with the microheterogeneous systems. From time-resolved experiments it was shown that the interaction proceeded with conformational changes in both peptides, and further information was obtained from quenching of Trp fluorescence by a family of N-alkylpyridinium ions, which possess affinity to the microheterogeneous systems dependent on the length of the alkyl chain. The quenching of Trp fluorescence was enhanced in the presence of charged micelles, compared to the buffer solution and the accessibility of the fluorophore to the quencher was dependent on the peptide and the alkylpyridinium: in ACTH(1-21) highest collisional constants were obtained using ethylpyridinium as quencher, indicating a location of the residue in the surface of the micelle, while in alpha-MSH the best quencher was hexylpyridinium, indicating insertion of the residue into the non-polar region of the micelles. The results had shown that the interaction between the peptides and the biomimetic systems where driven by combined electrostatic and hydrophobic effects: in ACTH(1-24) the electrostatic interaction between highly positively charged C-terminal and negatively charged surface of micelles; and aggregates predominates over hydrophobic interactions involving residues in the central region of the peptide; in alpha-MSH, which presents one residual positive charge, the hydrophobic interactions are relevant to position the Trp residue in the non-polar region of the microheterogeneous systems. (C) 2008 Elsevier B.V. All rights reserved.