979 resultados para Alpha B-crystallin
Resumo:
Tissue microarrays assembled from control and multiple sclerosis (MS) brain tissue have been used to assess the expression patterns and cellular distribution of two antigens, the proinflammatory cytokine osteopontin and the inducible heat shock protein alpha B -crystallin, which have previously been implicated in MS pathogenesis. Tissue cores were taken from paraffin-embedded donor blocks containing chronic active or chronic inactive plaques and normal-appearing white matter (NAWM) in seven MS cases, and white matter (WM) in five control cases. Expression patterns of both proteins were assessed against myelin density and microglial activation in the different tissue categories. Both proteins showed increased expression in all categories of MS tissue compared with control WM. The results indicate progressive up-regulation of expression of osteopontin with increased plaque activity, while elevation of alpha B-crystallin expression in MS tissue was independent of demyelination. In MS NAWM a significant correlation was observed between high levels of expression of osteopontin and alpha B -crystallin. Osteopontin expression was predominantly confined to astrocytes throughout MS tissues. alpha B -crystallin was expressed on astrocytes, oligodendrocytes and occasionally on demyelinated axons. Taken together, these data indicate a wider distribution of osteopontin and alpha B -crystallin in MS tissues than previously described and support their proposed role in MS pathogenesis.
Resumo:
Ceramide has been identified as a potential second messenger that may mediate cell differentiation and apoptosis after exposure to hormonal agonists such as 1 alpha, 25-dihydroxyvitamin D3, tumor necrosis factor alpha, or gamma-interferon. The secondary cellular events that follow ceramide generation remain undefined. We report that in NIH WT-3T3 cells, ceramide induces an enhancement of gene transcription of alpha B-crystallin, a small heat shock protein. The levels of alpha B-crystallin, as measured by Northern blot and immunoblot analyses, were increased by the addition of an exogenous short-chain ceramide, N-acetylsphingosine, or by increasing endogenous intracellular ceramide by inhibition of glucosylceramide synthase. Similar effects were not seen in the expression of the closely related gene, Hsp25. To ascertain whether ceramide-mediated gene transcription was a feature of the heat shock response, cell ceramide was measured in heat shocked cells and observed to be elevated 2-fold immediately upon the return of cells to 37 degrees C. Thus ceramide formed after heat shock treatment of 3T3 cells may mediate the transcription events associated with the cell stress response.
Resumo:
Objectives. Gene expression profiling has provided many insights into tumor progression but translation to clinical practice has been limited. We have previously identified a list of potential markers by the differences of expression profiling of seven matched head and neck cancer (HNSCC) tumors with autologous normal oral mucosa (NOM). Alpha B-crystallin (CRYAB) was in the top 5% of genes identified with statistically significant differences in expression between tumor and NOM at the mRNA level. The objective was to confirm this in routine paraffin sections at the protein level. Study Design: The level of alpha B-crystallin was determined in tumors of 62 HNSCC patients whose prognosis was known for 5 years. Methods. Immunohistochemical detection of alpha B-crystallin expression was performed on HNSCC paraffin sections. Results. Univariate survival analysis identified lack of alpha B-crystallin staining as an independent prognostic marker for disease-free interval (P < 0.001) and overall survival (P < 0.002) of HNSCC patients over the 5-year observation period. Notably, all 13 patients (100%), including 5 patients with nodal disease whose tumors lacked alpha B-crystallin had no recurrences (P < 0.001). Nineteen of 27 node-negative patients stained positive for alpha B-crystallin and seven of the 19 (36.8%) had recurrences. Conclusion: Presence or absence of expression of alpha B-crystallin was a powerful marker for prognosis in this series of patients.
Resumo:
alpha B-Crystallin is a ubiquitous small heat-shock protein (sHsp) renowned for its chaperone ability to prevent target protein aggregation. It is stress-inducible and its up-regulation is associated with a number of disorders, including those linked to the deposition of misfolded proteins, such as Alzheimer's and Parkinson's diseases. We have characterised the formation of amyloid fibrils by human alpha B-crystallin in detail, and also that of alpha A-crystallin and the disease-related mutant R120G (alpha B-crystallin. We find that the last 12 amino acid residues of the C-terminal region of alpha B-crystallin are predicted from their physico-chemical properties to have a very low propensity to aggregate. H-1 NMR spectroscopy reveals that this hydrophilic C-terminal region is flexible both in its solution state and in amyloid fibrils, where it protrudes from the fibrillar core. We demonstrate, in addition, that the equilibrium between different protofilament assemblies can be manipulated and controlled in vitro to select for particular alpha B-crystallin amyloid morphologies. Overall, this study suggests that there could be a fine balance in vivo between the native functional sHsp state and the formation of amyloid fibrils. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The molecular chaperone αB-crystallin is a small heat-shock protein that is upregulated in response to a multitude of stress stimuli, and is found colocalized with Aβ amyloid fibrils in the extracellular plaques that are characteristic of Alzheimer's disease. We investigated whether this archetypical small heat-shock protein has the ability to interact with Aβ fibrils in vitro. We find that αB-crystallin binds to wild-type Aβ(42) fibrils with micromolar affinity, and also binds to fibrils formed from the E22G Arctic mutation of Aβ(42). Immunoelectron microscopy confirms that binding occurs along the entire length and ends of the fibrils. Investigations into the effect of αB-crystallin on the seeded growth of Aβ fibrils, both in solution and on the surface of a quartz crystal microbalance biosensor, reveal that the binding of αB-crystallin to seed fibrils strongly inhibits their elongation. Because the lag phase in sigmoidal fibril assembly kinetics is dominated by elongation and fragmentation rates, the chaperone mechanism identified here represents a highly effective means to inhibit fibril proliferation. Together with previous observations of αB-crystallin interaction with α-synuclein and insulin fibrils, the results suggest that this mechanism is a generic means of providing molecular chaperone protection against amyloid fibril formation.
Resumo:
A new complex K5H[Co-4(VW9O33)(2)]. 5H(2)O was prepared and its structure was determined by X - ray diffraction analysis. The anion has alpha - beta - Keggin structure. Two (VW9O33)(7-) moieties (alpha - B isomers) are linked via four Co(11)O-6 groups. The single crystal of the title complex is monoclinic P2(1/n) with a = 1.2307(3) nm, b = 2.1250(4) nm, c = 1.5817(3) nm, beta = 91.86(3)degrees, V = 4.1343 (14) nm(3), R = 0.0895, R-w = 0.2180.
Resumo:
Essential and Molecular Dynamics (ED/MD) have been used to model the conformational changes of a protein implicated in a conformational disease-cataract, the largest cause of blindness in the world-after non-enzymic post-translational modification. Cyanate modification did not significantly alter flexibility, while the Schiff's base adduct produced a more flexible N-terminal domain, and intra-secondary structure regions, than either the cyanate adduct or the native structure. Glycation also increased linker flexibility and disrupted the charge network. A number of post-translational adducts showed structural disruption around Cys15 and increased linker flexibility; this may be important in subsequent protein aggregation. Our modelling results are in accord with experimental evidence, and show that ED/MD is a useful tool in modelling conformational changes in proteins implicated in disease processes. (C) 2003 Published by Elsevier Ltd.
Resumo:
αB-crystallin, a member of the small heat shock protein family, possesses chaperone-like function. Recently, it has been shown that a missense mutation in αB-crystallin, R120G, is genetically linked to a desmin-related myopathy as well as to cataracts [Vicart, P., Caron, A., Guicheney, P., Li, A., Prevost, M.-C., Faure, A., Chateau, D., Chapon, F., Tome, F., Dupret, J.-M., et al. (1998) Nat. Genet. 20, 92–95]. By using α-lactalbumin, alcohol dehydrogenase, and insulin as target proteins, in vitro assays indicated that R120G αB-crystallin had reduced or completely lost chaperone-like function. The addition of R120G αB-crystallin to unfolding α-lactalbumin enhanced the kinetics and extent of its aggregation. R120G αB-crystallin became entangled with unfolding α-lactalbumin and was a major portion of the resulting insoluble pellet. Similarly, incubation of R120G αB-crystallin with alcohol dehydrogenase and insulin also resulted in the presence of R120G αB-crystallin in the insoluble pellets. Far and near UV CD indicate that R120G αB-crystallin has decreased β-sheet secondary structure and an altered aromatic residue environment compared with wild-type αB-crystallin. The apparent molecular mass of R120G αB-crystallin, as determined by gel filtration chromatography, is 1.4 MDa, which is more than twice the molecular mass of wild-type αB-crystallin (650 kDa). Images obtained from cryoelectron microscopy indicate that R120G αB-crystallin possesses an irregular quaternary structure with an absence of a clear central cavity. The results of this study show, through biochemical analysis, that an altered structure and defective chaperone-like function of αB-crystallin are associated with a point mutation that leads to a desmin-related myopathy and cataracts.
Resumo:
We used two-dimensional difference gel electrophoresis to determine early changes in the stress-response pathways that precede focal adhesion disorganization linked to the onset of apoptosis of renal epithelial cells. Treatment of LLC-PK1 cells with the model nephrotoxicant 1,2-(dichlorovinyl)-L-cysteine (DCVC) resulted in a >1.5-fold up- and down-regulation of 14 and 9 proteins, respectively, preceding the onset of apoptosis. Proteins included those involved in metabolism, i.e. aconitase and pyruvate dehydrogenase, and those related to stress responses and cytoskeletal reorganization, i.e. cofilin, Hsp27, and alpha-b-crystallin. The most prominent changes were found for Hsp27, which was related to a pI shift in association with an altered phosphorylation status of serine residue 82. Although both p38 and JNK were activated by DCVC, only inhibition of p38 with SB203580 reduced Hsp27 phosphorylation, which was associated with accelerated reorganization of focal adhesions, cell detachment, and apoptosis. In contrast, inhibition of JNK with SP600125 maintained cell adhesion as well as protection against apoptosis. Active JNK co-localized at focal adhesions after DCVC treatment in a FAK-dependent manner. Inhibition of active JNK localization at focal adhesions did not prevent DCVC-induced phosphorylation of Hsp27. Overexpression of a phosphorylation-defective mutant Hsp27 acted as a dominant negative and accelerated the DCVC-induced changes in the focal adhesions as well as the onset of apoptosis. Our data fit a model whereby early p38 activation results in a rapid phosphorylation of Hsp27, a requirement for proper maintenance of cell adhesion, thus suppressing renal epithelial cell apoptosis.
Resumo:
We used two-dimensional difference gel electrophoresis to determine early changes in the stress-response pathways that precede focal adhesion disorganization linked to the onset of apoptosis of renal epithelial cells. Treatment of LLC-PK1 cells with the model nephrotoxicant 1,2-(dichlorovinyl)-L-cysteine ( DCVC) resulted in a > 1.5-fold up- and down-regulation of 14 and 9 proteins, respectively, preceding the onset of apoptosis. Proteins included those involved in metabolism, i.e. aconitase and pyruvate dehydrogenase, and those related to stress responses and cytoskeletal reorganization, i.e. cofilin, Hsp27, and alpha-b-crystallin. The most prominent changes were found for Hsp27, which was related to a pI shift in association with an altered phosphorylation status of serine residue 82. Although both p38 and JNK were activated by DCVC, only inhibition of p38 with SB203580 reduced Hsp27 phosphorylation, which was associated with accelerated reorganization of focal adhesions, cell detachment, and apoptosis. In contrast, inhibition of JNK with SP600125 maintained cell adhesion as well as protection against apoptosis. Active JNK co-localized at focal adhesions after DCVC treatment in a FAK-dependent manner. Inhibition of active JNK localization at focal adhesions did not prevent DCVC-induced phosphorylation of Hsp27. Overexpression of a phosphorylation-defective mutant Hsp27 acted as a dominant negative and accelerated the DCVC-induced changes in the focal adhesions as well as the onset of apoptosis. Our data fit a model whereby early p38 activation results in a rapid phosphorylation of Hsp27, a requirement for proper maintenance of cell adhesion, thus suppressing renal epithelial cell apoptosis.
Resumo:
Head and neck cancer consists of a diverse group of cancers that ranges from cutaneous, lip, salivary glands, sinuses, oral cavity, pharynx and larynx. Each group dictates different management. In this review, the primary focus is on head and neck squamous cell carcinoma (HNSCC) arising from the mucosal lining of the oral cavity and pharynx, excluding nasopharyngeal cancer. Presently, HNSCC is the sixth most prevalent neoplasm in the world, with approximately 900,000 cases diagnosed worldwide. Prognosis has improved little in the past 30 years. In those who have survived, pain, disfigurement and physical disability from treatment have had an enormous psychosocial impact on their lives. Management of these patients remains a challenge, especially in developing countries where this disease is most common. Of all human cancers, HNSCC is the most distressing since the head and neck is the site of the most complex functional anatomy in the human body. Its areas of responsibility include breathing, the CNS, vision, hearing, balance, olfaction, taste, swallowing, voice, endocrine and cosmesis. Cancers that occur in this area impact on these important human functions. Consequently, in treating cancers of the head and neck, the effects of the treatment on the functional outcome of the patient need the most serious consideration. In assessing the success of HNSCC treatment, consideration of both the survival and functional deficits that the patient may suffer as a consequence of their treatment are of paramount importance. For this reason, the modern-day management of head and neck patients should be carried out in a multidisciplinary head and neck clinic.
Resumo:
The abundance of delta-crystallin in the chicken eye lens provides an advantageous marker for tissue-specific gene expression during cellular differentiation. The lens-specific expression of the delta 1-crystallin gene is governed by an enhancer in the third intron, which binds a positive (delta EF2) and negative (delta EF1) factor in its core region. Here we show by DNase I footprinting, electrophoretic mobility-shift assays, and cotransfection experiments with the delta 1-promoter/enhancer fused to the chloramphenicol acetyltransferase reporter gene that the delta 1-crystallin enhancer has two adjacent functional Pax-6 binding sites. We also demonstrate by DNase I footprinting that the delta EF1 site can bind the transcription factor USF, raising the possibility that USF may cooperate with Pax-6 in activation of the chicken delta 1- and alpha A-crystallin genes. These data, coupled with our recent demonstration that Pax-6 activates the alpha A-crystallin gene, suggest that Pax-6 may have been used extensively throughout evolution to recruit and express crystallin genes in the lens.
Resumo:
Multiple sclerosis (MS) is a complex autoimmune disorder of the CNS with both genetic and environmental contributing factors. Clinical symptoms are broadly characterized by initial onset, and progressive debilitating neurological impairment. In this study, RNA from MS chronic active and MS acute lesions was extracted, and compared with patient matched normal white matter by fluorescent cDNA microarray hybridization analysis. This resulted in the identification of 139 genes that were differentially regulated in MS plaque tissue compared to normal tissue. Of these, 69 genes showed a common pattern of expression in the chronic active and acute plaque tissues investigated (Pvalue<0.0001, ρ=0.73, by Spearman's ρ analysis); while 70 transcripts were uniquely differentially expressed (≥1.5-fold) in either acute or chronic active tissues. These results included known markers of MS such as the myelin basic protein (MBP) and glutathione S-transferase (GST) M1, nerve growth factors, such as nerve injury-induced protein 1 (NINJ1), X-ray and excision DNA repair factors (XRCC9 and ERCC5) and X-linked genes such as the ribosomal protein, RPS4X. Primers were then designed for seven array-selected genes, including transferrin (TF), superoxide dismutase 1 (SOD1), glutathione peroxidase 1 (GPX1), GSTP1, crystallin, alpha-B (CRYAB), phosphomannomutase 1 (PMM1) and tubulin β-5 (TBB5), and real time quantitative (Q)-PCR analysis was performed. The results of comparative Q-PCR analysis correlated significantly with those obtained by array analysis (r=0.75, Pvalue<0.01, by Pearson's bivariate correlation). Both chronic active and acute plaques shared the majority of factors identified suggesting that quantitative, rather than gross qualitative differences in gene expression pattern may define the progression from acute to chronic active plaques in MS.
Resumo:
It has been shown that ouabain (OUA) can activate the Na,K-ATPase complex and mediate intracellular signaling in the central nervous system (CNS). Inflammatory stimulus increases glutamatergic transmission, especially at N-methyl-D-aspartate (NMDA) receptors, which are usually coupled to the activation of nitric oxide synthase (NOS). Nuclear factor-kappa B (NF-kappa B) activation modulates the expression of genes involved in development, plasticity, and inflammation. The present work investigated the effects of OUA on NF-kappa B binding activity in rat hippocampus and the influence of this OUA-Na,K-ATPase signaling cascade in NMDA-mediated NF-kappa B activation. The findings presented here are the first report indicating that intrahippocampal administration of OUA, in a concentration that did not alter Na,K-ATPase or NOS activity, induced an activation of NF-kappa B, leading to increases in brain-derived neurotrophic factor (Bdnf), inducible NOS (iNos), tumor necrosis factor-alpha (Tnf-alpha), and B-cell leukemia/lymphoma 2 (Bcl2) mRNA levels. This response was not linked to any significant signs of neurodegeneration as showed via Fluoro-Jade B and Nissl stain. Intrahippocampal administration of NMDA induced NF alpha B activation and increased NOS and alpha 2/3-Na,K-ATPase activities. NMDA treatment further increased OUA-induced NF-kappa B activation, which was partially blocked by MK-801, an antagonist of NMDA receptor. These results suggest that OUA-induced NF-kappa B activation is at least in part dependent on Na,K-ATPase modulatory action of NMDA receptor in hippocampus. The interaction of these signaling pathways could be associated with biological mechanisms that may underlie the basal homeostatic state linked to the inflammatory signaling cascade in the brain. (c) 2011 Wiley Periodicals, Inc.
Resumo:
The hoatzin (Opisthocomus hoazin) lives in the humid lowlands of northern and central South America, often in riparian habitats. It is a slender bird approximately 65 cm in length, brownish with lighter streaks and buffy tips to the long tail feathers. The small head has a ragged, bristly crest of reddish-brown feathers, and the bare skin of the face is bright blue. It resembles a chachalaca (Ortalis, Cracidae) in size and shape, but its plumage and markings are similar to those of the smaller guira cuckoo (Guira guira). The hoatzin (pronounced Watson) has been a taxonomic puzzle since it was described in 1776. It usually has been viewed as related to the gallinaceous birds, but alliances to other groups have been suggested, including the cuckoos. We present DNA sequence evidence from the 12S and 16S rRNA mitochondrial genes, and from the nuclear gene that codes for the eye lens protein, alpha A-crystallin. The results indicate that the hoatzin is most closely related to the typical cuckoos and that the divergence occurred at or near the base of the cuculiform phylogenetic tree.