2 resultados para Alocasia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Crude extracts of several vegetables such as peach (Prunus persica), yam (Alocasia macrorhiza), manioc (Manihot utilissima), artichoke (Cynara scolymus L), sweet potato (Ipomoea batatas (L.) Lam.), turnip (Brassica campestre ssp. rapifera), horseradish (Armoracia rusticana) and zucchini (Cucurbita pepo) were investigated as the source of peroxidase (POD: EC 1.11.1.7). Among those, zucchini (Cucurbita pepo) crude extract was found to be the best one. This enzyme in the presence of hydrogen peroxide catalyses the oxidation of paracetamol to N-acetyl-p-benzoquinoneimine which the electrochemical reduction back to paracetamol was obtained at a peak potential of ¾0.10V. A cyclic voltammetric study was performed by scanning the potential from + 0.5 to ¾ 0.5 V. The recovery of paracetamol from two samples ranged from 97.3 to 106% and a rectilinear calibration curve for paracetamol concentration from 1.2x10-4 to 2.5x10-3 mol L-1 (r=0.9965) were obtained. The detection limit was 6.9x10-5 mol L-1 and the relative standard deviation was less than 1.1% for a solution containing 2.5x10-3 mol L-1 paracetamol and 2.0x10-3 mol L-1 hydrogen peroxide (n=12). The results obtained for paracetamol in pharmaceutical products using the proposed biosensor and Pharmacopoeial procedures are in agreement at the 95% confidence level.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Some properties of canna (Canna indica L.) and bore (Alocasia macrorrhiza) starches were evaluated and compared using cassava starch (Manihot esculenta Crantz) as a reference. Proximate analysis, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and viscosity measurements were performed. Canna and bore starches showed a similar degree of purity as that of the cassava starch. Canna starch exhibited higher thermal stability and viscosity of solution values than those of bore and cassava starches. XRD spectra showed that canna starch crystallizes as a B-type structure; however, bore and cassava starches crystallize as an A-type structure. Results proved that canna and bore starches are promising bio(materials), obtained from unconventional sources, to be used for industrial applications, as their physicochemical properties are similar to those of cassava starch, which it is known has potential applications in this area.