1000 resultados para Alnus
Resumo:
Abstract
Resumo:
Context: Anthropogenic activity has increased the level of atmospheric CO2, which is driving an increase of global temperatures and associated changes in precipitation patterns. At Northern latitudes, one of the likely consequences of global warming is increased precipitation and air humidity. Aims: In this work, the effects of both elevated atmospheric CO2 and increased air humidity on trees commonly growing in northern European forests were assessed. Methods: The work was carried out under field conditions by using Free Air Carbon dioxide Enrichment (FACE) and Free Air Humidity Manipulation (FAHM) systems. Leaf litter fall was measured over 4 years (FACE) or 5 years (FAHM) to determine the effects of FACE and FAHM on leaf phenology. Results: Increasing air humidity delayed leaf litter fall in Betula pendula, but not in Populus tremula × tremuloides. Similarly, under elevated atmospheric CO2, leaf litter fall was delayed in Betula pendula, but not in Alnus glutinosa. Increased CO2 appeared to interact with periods of low precipitation in summer and high ozone levels during these periods to effect leaf fall. Conclusions: This work shows that increased CO2 and humidity delay leaf fall, but this effect is species specific.
Resumo:
The ecological intensification of crops is proposed as a solution to the growing demand of agricultural and forest resources, in opposition to intensive monocultures. The introduction of mixed cultures as mixtures between nitrogen fixing species and non nitrogen fixing species intended to increase crop yield as a result of an improvement of the available nitrogen and phosphorus in soil. Relationship between crops have received little attention despite the wide range of advantages that confers species diversity to these systems, such as increased productivity, resilience to disruption and ecological sustainability. Forests and forestry plantations can develop an important role in storing carbon in their tissues, especially in wood which become into durable product. A simplifying parameter to analyze the amount allocated carbon by plantation is the TBCA (total belowground carbon allocation), whereby, for short periods and mature plantations, is admitted as the subtraction between soil carbon efflux and litterfall. Soil respiration depends on a wide range of factors, such as soil temperature and soil water content, soil fertility, presence and type of vegetation, among others. The studied orchard is a mixed forestry plantation of hybrid walnuts(Juglans × intermedia Carr.) for wood and alders (Alnus cordata (Loisel.) Duby.), a nitrogen fixing specie through the actinomycete Frankia alni ((Woronin, 1866) Von Tubeuf 1895). The study area is sited at Restinclières, a green area near Montpellier (South of France). In the present work, soil respiration varied greatly throughout the year, mainly influenced by soil temperature. Soil water content did not significantly influence the response of soil respiration as it was constant during the measurement period and under no water stress conditions. Distance between nearest walnut and measurement was also a highly influential factor in soil respiration. Generally there was a decreasing trend in soil respiration when the distance to the nearest tree increased. It was also analyzed the response of soil respiration according to alder presence and fertilizer management (50 kg N·ha-1·año-1 from 1999 to 2010). None of these treatments significantly influenced soil respiration, although previous studies noticed an inhibition in rates of soil respiration under fertilized conditions and high rates of available nitrogen. However, treatments without fertilization and without alder presence obtained higher respiration rates in those cases with significant differences. The lack of significant differences between treatments may be due to the high coefficient of variation experienced by soil respiration measurements. Finally an asynchronous fluctuation was observed between soil respiration and litterfall during senescence period. This is possibly due to the slowdown in the emission of exudates by roots during senescence period, which are largely related to microbial activity.
Resumo:
Series, title and imprint also in Russian.
Resumo:
Wet woodlands have been recognised as a priority habitat and have featured in the UK BAP since 1994. Although this has been acknowledged in a number of UK policies and guidelines, there is little information relating to their detailed ecology and management. This research, focusing on lowland Alnus glutinosa woodlands, aimed to address this data paucity through the analysis of species requirements and to develop a methodology to guide appropriate management for this habitat for the benefit of wildlife. To achieve these aims data were collected from 64 lowland Alnus glutinosa woodlands and a review of the literature was undertaken to identify species associated with the target habitat. The groundflora species found to be associated with lowland Alnus glutinosa woodland were assessed in relation to their optimal environmental conditions (Ellenberg indicator values) and survival strategies (Grime CSR-Strategy) to determine the characteristics (Characters of a Habitat; CoaHs) and range of intra-site conditions (Niches of a Habitat; NoaH). The methodologies, using CSR and Ellenberg indicator values in combination, were developed to determine NoaHs and were tested both quantitatively and qualitatively at different lowland Alnus glutinosa sites. The existence of CoaHs and NoaHs in actual sites was verified by detailed quadrat data gathered at three Alnus glutinosa woodlands at Stonebridge Meadows, Warwickshire, UK and analysed using TWINSPAN and DCA ordination. The CoaHs and NoaHs and their component species were confirmed to have the potential to occur in a particular woodland. Following a literature search relating to the management of small wet woodlands within the UK, in conjunction with the current research, broad principles and strategies were identified for the management of lowland Alnus glutinosa woodland. Using the groundflora composition, an innovative procedure is developed and described for identifying the potential variation within a particular site and determining its appropriate management. Case studies were undertaken on distinct woodlands and the methodology proved effective.
Resumo:
Peer reviewed
Resumo:
Summary
Resumo:
We examined the effects of riparian vegetation removal on algal dynamics and stream nutrient retention efficiency by comparing NH4-N and PO4-P uptake lengths from a logged and an unlogged reach in Riera Major, a forested Mediterranean stream in northeastern Spain. From June to September 1995, we executed 6 short-term additions of N (as NH4Cl) and P (as Na2HPO4) in a 200-m section to measure nutrient uptake lengths. The study site included 2 clearly differentiated reaches in terms of canopy cover by riparian trees: the first 100 m were completely logged (i.e., the logged reach) and the remaining 100 m were left intact (i.e., the shaded reach). Trees were removed from the banks of the logged reach in the winter previous to our sampling. In the shaded reach, riparian vegetation was dominated by alders (Alnus glutinosa). The study was conducted during summer and fall months when differences in light availability between the 2 reaches were greatest because of forest canopy conditions. Algal biomass and % of stream surface covered by algae were higher in the logged than in the shaded reach, indicating that logging had a stimulatory effect on algae in the stream. Overall, nutrient retention efficiency was higher (i.e., shorter uptake lengths) in the logged than in the shaded reach, especially for PO4-P. Despite a greater increase in PO4-P retention efficiency relative to that of NH4-N following logging, retention efficiency for NH4-N was higher than for PO4-P in both study reaches. The PO4-P mass-transfer coefficient was correlated with primary production in both study reaches, indicating that algal activity plays an important role in controlling PO4-P dynamics in this stream. In contrast, the NH4-N mass-transfer coefficient showed a positive relation-ship only with % of algal coverage in the logged reach, and was not correlated with any algal-related parameter in the shaded reach. The lack of correlation with algal production suggests that mechanisms other than algal activity (i.e., microbial heterotrophic processes or abiotic mechanisms) may also influence NH4-N retention in this stream. Overall, this study shows that logging disturbances in small shaded streams may alter in-stream ecological features that lead to changes in stream nutrient retention efficiency. Moreover, it emphasizes that alteration of the tight linkage between the stream channel and the adjacent riparian zone may directly and indirectly impact biogeochemical processes with implications for stream ecosystem functioning.
Resumo:
Maximum entropy modeling (Maxent) is a widely used algorithm for predicting species distributions across space and time. Properly assessing the uncertainty in such predictions is non-trivial and requires validation with independent datasets. Notably, model complexity (number of model parameters) remains a major concern in relation to overfitting and, hence, transferability of Maxent models. An emerging approach is to validate the cross-temporal transferability of model predictions using paleoecological data. In this study, we assess the effect of model complexity on the performance of Maxent projections across time using two European plant species (Alnus giutinosa (L.) Gaertn. and Corylus avellana L) with an extensive late Quaternary fossil record in Spain as a study case. We fit 110 models with different levels of complexity under present time and tested model performance using AUC (area under the receiver operating characteristic curve) and AlCc (corrected Akaike Information Criterion) through the standard procedure of randomly partitioning current occurrence data. We then compared these results to an independent validation by projecting the models to mid-Holocene (6000 years before present) climatic conditions in Spain to assess their ability to predict fossil pollen presence-absence and abundance. We find that calibrating Maxent models with default settings result in the generation of overly complex models. While model performance increased with model complexity when predicting current distributions, it was higher with intermediate complexity when predicting mid-Holocene distributions. Hence, models of intermediate complexity resulted in the best trade-off to predict species distributions across time. Reliable temporal model transferability is especially relevant for forecasting species distributions under future climate change. Consequently, species-specific model tuning should be used to find the best modeling settings to control for complexity, notably with paleoecological data to independently validate model projections. For cross-temporal projections of species distributions for which paleoecological data is not available, models of intermediate complexity should be selected.
Resumo:
OBJECTIVE: The prevalence of ragweed allergy is increasing worldwide. Ragweed distribution and abundance is spreading in Europe in a wide area ranging from the Rhone valley in France to Hungary and Ukraine, where the rate of the prevalence can peak at as high as 12%. Low-grade ragweed colonisation was seen in Geneva and Ticino, less than two decades ago. There were fears that allergies to ragweed would increase Switzerland. The intent of this study was to assess the rate of prevalence of sensitisation and allergy to ragweed in the population living in the first rural Swiss setting where ragweed had been identified in 1996, and to evaluate indirectly the efficacy of elimination and containment strategies. MATERIAL AND METHODS: In 2009, 35 adults in a rural village in the Canton of Geneva were recruited. Data were collected by means of questionnaires and skin-prick tests were done on each participant. The study was approved by the local Ethics Committee. RESULTS: Based on questionnaires, 48.6% had rhinitis (95% confidence interval [CI] 32.9-64.4; n = 17/35) and 17.1% asthma (95% CI 8.1-32.6; n = 6/35). Atopy was diagnosed in 26.4% (95% CI 12.9-44.4) of the sample (n = 9/34). Ragweed sensitisation was found in 2.9% (95% CI 0.7-19.7; n = 1/34), mugwort sensitisation in 2.9% (95% CI 0.1-14.9; n = 1/35), alder sensitisation in 17.1% (95% CI 6.6-33.6; n = 6/35), ash sensitisation in 12.5% (95% CI 3.5-29.0; n = 4/32) and grass sensitisation in 22.9% (95% CI 10.4-40.1; n = 8/35). Ragweed (95% CI 0.1-14.9; n = 1/34) and mugwort allergies (95% CI 0.1-14.9; n = 1/35) were both found in 2.9% of the population. CONCLUSION: This study showed a surprisingly low incidence of ragweed sensitisation and allergy, of 2.9% and 2.9%, respectively, 20 years after the first ragweed detection in Geneva. The feared rise in ragweed allergy seems not to have happened in Switzerland, compared with other ragweed colonised countries. These results strongly support early field strategies against ragweed.