164 resultados para Allylic amination
Resumo:
Two series of mesoporous hybrid iron(III) complex–silica aerogels were prepared in one-pot synthesis by using the sol–gel coordination chemistry approach. The use of the ligands 3-(2-aminoethylamino)propyltrimethoxysilane and 2-(diphenylphosphino)ethyltriethoxysilane, both with terminal triethoxysilyl groups, were used to incorporate metal complexes in situ into the framework of silica, through their co-condensation with a silicon alkoxide during the aerogel formation. This methodology yielded optically translucent hybrid mesoporous gels with homogeneous metal incorporation and excellent textural properties. The catalytic performance of these materials was tested in the direct amination of allylic alcohols in water as a target reaction, with activities comparable or even higher than those corresponding to the homogeneous iron(III) complex. Furthermore, these catalysts were stable and maintained their catalytic activity after six reaction cycles.
Resumo:
The allylic substitution reaction, and particularly the direct allylic amination reaction, of free allylic alcohols in water catalyzed by FeCl3⋅6 H2O is described. This novel environmentally-friendly methodology allows the use of a wide variety of nitrogenated nucleophiles such as sulfonamides, carbamates, benzamides, anilines, benzotriazoles, and azides, generally giving good yields of the corresponding substitution products. The synthetic applicability of the process is also demonstrated because the reaction can be performed on gram-scale. Additionally, carbon nucleophiles such as silylated nucleophiles, aromatic compounds, and malonates also proved to be suitable for this transformation. Finally, the nature of the catalytic species present in aqueous media is unveiled, pointing towards the formation of hexaaquo iron(III) complexes.
Resumo:
The aim of this thesis was to investigate the synthesis of enantiomerically enriched heterocycles and dehydro-β-amino acid derivatives which can be used as scaffolds or intermediates of biologically active compounds, in particular as novel αvβ3 and α5β1 integrin ligands. The starting materials of all the compounds here synthesized are alkylideneacetoacetates. Alkylidene derivates are very usefull compounds, they are usually used as unsaturated electrophiles and they have the advantage of introducing different kind of functionality that may be further elaborated. In chapter 1, regio- and stereoselective allylic amination of pure carbonates is presented. The reaction proceeds via uncatalyzed or palladium-catalyzed conditions and affords enantiopure dehydro-β-amino esters that are useful precursor of biologically active compounds. Chapter 2 illustrates the synthesis of substituted isoxazolidines and isoxazolines via Michael addition followed by intramolecular hemiketalisation. The investigation on the effect of the Lewis acid catalysis on the regioselectivity of the addition it also reported. Isoxazolidines and isoxazolines are interesting heterocyclic compounds that may be regarded as unusual constrained -amino acids or as furanose mimetics. The synthesis of unusual cyclic amino acids precursors, that may be envisaged as proline analogues, as scaffolds for the design of bioactive peptidomimetics is presented in chapter 3. The synthesis of 2-substituted-3,4-dehydropyrrole derivatives starting from allylic carbonates via a two step allylic amination/ring closing metathesis (RCM) protocol is carried out. The reaction was optimized by testing different Grubbs’ catalysts and carbamate nitrogen protecting groups. Moreover, in view of a future application of these dehydro-β-amino acids as central core of peptidomimetics , the malonate chain was also used to protect nitrogen prior to RCM. Finally, chapter 4 presents the synthesis of two novel different classes of integrin antagonists, one derived from dehydro-β-amino acid prepared as described in chapter 1 and the other one has isoxazolidines synthesized in chapter 2 as rigid constrained core. Since that these compounds are promising RGD mimetics for αvβ3 and α5β1 integrins, they have been submitted to biological assay. and to interpret on a molecular basis their different affinities for the αvβ3 receptor, docking studies were performed using Glide program.
Resumo:
omega-Transaminases have been evaluated as biocatalysts in the reductive amination of organoselenium acetophenones to the corresponding amines, and in the kinetic resolution of racemic organoselenium amines. Kinetic resolution proved to be more efficient than the asymmetric reductive amination. By using these methodologies we were able to obtain both amine enantiomers in high enantiomeric excess (up to 99%). Derivatives of the obtained optically pure o-selenium 1-phenylethyl amine were evaluated as ligands in the palladium-catalyzed asymmetric alkylation, giving the alkylated product in up to 99% ee.
Resumo:
Described herein is a one-pot synthesis of a,p-epoxy ketones using a palladium-catalyzed epoxidation-oxidation sequence. Functionalized terminal allylic alcohols are treated with m-CPBA Under mild reaction conditions to obtain the alpha,beta-epoxy ketones. The main benefit of this approach is that the epoxidation of the terminal double bond and the oxidation of the secondary alcohol occured in the same reaction under mild reactions and both electron-donating and electron-withdrawing functionalities are tolerated in the reaction sequence. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The thermal decomposition of 2,3-di~ethy l - J-hydr operox y- 1 - butene , p r epared f rol") singl e t oxygen, has been studied i n three solvents over the tempe r a ture r ange from 1500e to l o00e and t!1e i 111 t ial ~oncentrfttl nn r Ange from O. 01 M to 0.2 M. Analys i s of the kine tic data ind ica te s i nduced homolysis as the n ost probRble mode of d e composition, g iving rise to a 3/2 f S order dependence upon hy d.roperoxide concent :r8.tl on . Experimental activation e nergies for the decomposition were f ound to be between 29.5 kcsl./raole and 30.0 k cal./mole .• \,iith log A factors between 11 . 3 and 12.3. Product studies were conducted in R variety of solvents a s well as in the pr esence of a variety of free r adical initiators . Investigation of the kinetic ch a in length indicated a chain length of about fifty. A degenerat i ve chain branching mechanism 1s proposed which predicts the multi t ude of products which Rre observed e xperimentally as well as giving activation energies and log A factors si~il a r to those found experimentally .
Resumo:
The rapid synthesis of functionalised morpholines and [1,4]-oxazepanes displaying up to three stereocentres, by reductive amination reactions between carbohydrate derived dialdehydes and a range of amines, is described. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The [2,3]-sigmatropic rearrangement of tetrahydropyridine-derived ammonium ylids is a valuable method for the preparation of substituted pyrrolidine carboxylates. The presence of an allylic substituent does not intrinsically reduce the yield of rearrangements, and the diastereoselectivity of rearrangement is related to the structure of the diazo reactant. The method represents a very rapid means of accessing complex pyrrolidines, as shown by preparation of a precursor to the core of lactacystin.
Resumo:
The reaction of geraniol with different lithium carbenoids generated from n-BuLi and the corresponding dihaloalkane has been evaluated. The reaction occurs in a chemo and stereoselective manner, which is consistent with a directing effect from the oxygen of the allylic moiety. Furthermore, a set of polyenes containing allylic hydroxyl or ether groups were chemoselectively and stereoselectively converted into the corresponding gemdimethylcyclopropanes in one single step in moderate to good yields mediated by a lithium carbenoid generated in situ by reaction of n-BuLi and 2,2-dibromopropane.
Resumo:
In this work, we prepared a new magnetically recoverable CoO catalyst through the deposition of the catalytic active metal nanoparticles of 2-3 nm on silica-coated magnetite nanoparticles to facilitate the solid separation from liquid media. The catalyst was fully characterized and presented interesting properties in the oxidation of cyclohexene, as for example, selectivity to the allylic oxidation product. It was also observed that CoO is the most active species when compared to Co(2+), Co(3)O(4) and Fe(3)O(4) in the catalytic conditions studied.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The challenge of the present work was to synthesize and to characterize new classes of N-containing polymers via palladium-catalyzed aryl amination. This work was inspired by a desire to combine the properties of high-performance polymers such as PEKs with those of N-containing conductive polymers such as polyaniline (PANI), poly(aromatic amides) (PAAs), and the ready synthesis of N-containing simple aromatic compound by the Buchwald-Hartwig reaction. Careful investigation of a model reaction was carried out to provide insights into the formation of side products which will have a negative effect upon the molecular weight or upon the materials properties of the desired polymers in the polycondensation reaction. In this thesis, five new different polymer classes namely, poly(imino ketone)s (PIKs), poly(imino acridine)s (PIAcs), poly(imino azobenzene)s (PIAzos), poly(imino fluorenone)s (PIFOs), and poly(imino carbazole)s (PICs) were synthesized and fully characterized by means of 1H-NMR, elemental analysis, UV, FT-IR, X-ray, GPC, TGA, DSC, DMA, and dielectric spectroscopy. To optimize the polycondensation process, the influence of the concentration, temperature, ligands and the reactivity of the halogen containing monomers were investigated. A temperature of 100-165 °C and a concentration of 30-36 % were found to be optimal for the palladium-catalyzed polycondensation to produce polymer with high molecular weight (Mn = 85 900, Mw = 474 500, DP = 126). Four different ligands were used successfully in the Pd-catalyzed process, of which the Pd/BINAP system was found to be the most effective catalyst, producing the highest yield and highest molecular weight polymers. It was found that the reactivity decreases strongly with increasing electronegativity of the halogen atoms, for example better yields, and higher molecular weights were obtained by using dibromo compounds than dichloro compounds while difluoro compounds were totally unreactive. Polymer analogous transformations, such as the protonation reaction of the ring nitrogens in PIAcs, or of the azobenzene groups of PIAzos, the photo and thermal cis-trans-isomerization of PIAzos, and of poly(imino alcohol)s were also studied. The values of the dielectric constants of PIKs at 1 MHz were in the range 2.71-3.08. These low values of the dielectric constant are lower than that of "H Film", a polyimide Kapton film which is one of the most preferred high-performance dielectrics in microelectronic applications having a dielectric constant of 3.5. In addition to the low values of the dielectric constants, PIKs have lower and glass transition temperatures (Tgs) than arimides such as Kapton which may make them more easily processable. Cyclic voltammetry showed that PICs exhibited low oxidation and reduction potentials and their values were shifted to low values with increasing degree of polymerization i.e. with increasing of the carbazole content in backbone of PICs (PIC-7, 0.44, 0.33 V, DP= 37, PIC-5, 0.63, 0.46, DP= 16, respectively).
Resumo:
Improvement of the features of an enzyme is in many instances a pre-requisite for the industrial implementation of these exceedingly interesting biocatalysts. To reach this goal, the researcher may utilize different tools. For example, amination of the enzyme surface produces an alteration of the isoelectric point of the protein along with its chemical reactivity (primary amino groups are the most widely used to obtain the reaction of the enzyme with surfaces, chemical modifiers, etc.) and even its “in vivo” behavior. This review will show some examples of chemical (mainly modifying the carboxylic groups using the carbodiimide route), physical (using polycationic polymers like polyethyleneimine) and genetic amination of the enzyme surface. Special emphasis will be put on cases where the amination is performed to improve subsequent protein modifications. Thus, amination has been used to increase the intensity of the enzyme/support multipoint covalent attachment, to improve the interaction with cation exchanger supports or polymers, or to promote the formation of crosslinkings (both intra-molecular and in the production of crosslinked enzyme aggregates). In other cases, amination has been used to directly modulate the enzyme properties (both in immobilized or free form). Amination of the enzyme surface may also pursue other goals not related to biocatalysis. For example, it has been used to improve the raising of antibodies against different compounds (both increasing the number of haptamers per enzyme and the immunogenicity of the composite) or the ability to penetrate cell membranes. Thus, amination may be a very powerful tool to improve the use of enzymes and proteins in many different areas and a great expansion of its usage may be expected in the near future.