1000 resultados para Alluvium -- Catalonia -- Ter (River)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pleistocene and Quaternary sediments adjacent to the medium course of the Fluvià river are a source of aggregate in the Garrotxa. Four lithological units can be used directly, or with a minimal processing as coarse aggregate. They have been mapped in detail at the 1:5.000 escale. The stratigraphic analysis have made possible the four units to be ordered in relation to their suitibility for usage as aggregate. From high to low relative quality they are: the basaltic flow, fluviatile deposits, plio-quaternary conglomerates, and glacis deposits

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The depth of the water table and the clay content are determinant factors for the exploitability of natural aggregates, such as the alluvial sands and gravels found on the fluvial domain of the Ter River. In this preliminary study, carried out in the Celri basin, we conclude that these variables can be determined by means of geophysical methods and recornmends the use of such methods in studies of regional character

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Cainozoic alluvium of the Condamine River valley is interpreted to consist of sediments deposited as floodplain and sheetwash deposits in bedrock valleys eroded into Mesozoic sedimentary rocks and tertiary volcanics. A maximum recorded sediment accumulation of 134 m is centred just south of Dalby. The lower section ofboth the flood plain and sheetwash alluvium is composed of variegated sandy and clayey sediments and the upper section of brown and grey sandy and clayey sediments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Estudi de la connectivitat fluvial del riu Fluvià en relació a l’anguila europea (Anguilla anguilla). S’identifiquen les barreres físiques transversals del curs principal d’aquest riu, es valora la connectivitat longitudinal mitjançant l’índex de connectivitat fluvial (ICF) i es proposen mesures correctores per tal de millorar la migració de l’anguila i el moviment natural d’altres espècies

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Estudi de la distribució del pteridòfit invasor Azolla filiculoides al tram mitjà-baix del riu Ter, entre El Pasteral i la seva desembocadura, anàlisi dels factors ambientals que afecten el seu creixement i descripció del cicle biològic. Es proposen diverses pautes per a la seva gestió

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Estudi de les plantes ornamentals conreades al sector esquerra de les ribes del Ter al seu pas per Girona, incidint en les espècies no autòctones i elaboració d’una cartografia digital dels arbres i arbusts de la zona de Sant Ponç (Girona)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This article compares the mid-nineteenth century landscape of the River Tordera delta with the present day landscape, based, above all, on the changes that have occurred in land use and land cover. The mid 19th century landscape was reconstructed using data obtained from the amillaraments (land inventories) and other historical documents. Present-day land use and cover was established through photo interpretation and field work. The most important changes detected concern the almost complete disappearance of certain crops, such as vineyards, which were very important in the 19th century; the expansion of forest in place of abandoned tilled land and the increase in built up areas, which, taken together, produce a highly fragmented landscape pattern

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Onyar River basin is situated in the depression of la Selva. His origins are related to tectonic activity during Neogen in this region. In his evolution, we note a slowly and continuous downfall which directs the morphodinamical behaviour. In this sense, the drainage network has a directional trend towards the north, as consecuence of fault systems, and specially the N-S oriented one. A fault of this system has an important influence in the basin morphology, directs the drainage towards the north and avoids a closely drainage in the basin

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It is a contribution to the study of the terraces of the river Ter along its mid-course in the town of Girona, since that is the last speace where it is still possible to observe four of these terraces with clear characteristics of climatical deposition. Itsmorphological peculiarities are described as well as the morphometrical and lithological parameters of its pebbles. These terraces are compared with others which have been studied in other areas of the regions and conclusions are drawn concerning deposition, source àrea and chronology

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Starting from the discovery of a cheek-booth Dinotherium giganteum KAUP in the river Oñar in Gerona we can consider that the Miocene formations of La Selva expand up to this area

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Laurentide glaciation during the early Pleistocene (~970 ka) dammed the southeast-flowing West Branch of the Susquehanna River (WBSR), scouring bedrock and creating 100-km-long glacial Lake Lesley near the Great Bend at Muncy, Pennsylvania (Ramage et al., 1998). Local drill logs and well data indicate that subsequent paleo-outwash floods and modern fluvial processes have deposited as much as 30 meters of alluvium in this area, but little is known about the valley fill architecture and the bedrock-alluvium interface. By gaining a greater understanding of the bedrock-alluvium interface the project will not only supplement existing depth to bedrock information, but also provide information pertinent to the evolution of the Muncy Valley landscape. This project determined if variations in the thickness of the valley fill were detectable using micro-gravity techniques to map the bedrock-alluvium interface. The gravity method was deemed appropriate due to scale of the study area (~30 km2), ease of operation by a single person, and the available geophysical equipment. A LaCoste and Romberg Gravitron unit was used to collect gravitational field readings at 49 locations over 5 transects across the Muncy Creek and Susquehanna River valleys (approximately 30 km2), with at least two gravity base stations per transect. Precise latitude, longitude and ground surface elevation at each location were measured using an OPUS corrected Trimble RTK-GPS unit. Base stations were chosen based on ease of access due to the necessity of repeat measurements. Gravity measurement locations were selected and marked to provide easy access and repeat measurements. The gravimeter was returned to a base station within every two hours and a looping procedure was used to determine drift and maximize confidence in the gravity measurements. A two-minute calibration reading at each station was used to minimize any tares in the data. The Gravitron digitally recorded finite impulse response filtered gravity measurements every 20 seconds at each station. A measurement period of 15 minutes was used for each base station occupation and a minimum of 5 minutes at all other locations. Longer or multiple measurements were utilized at some sites if drift or other externalities (i.e. train or truck traffic) were effecting readings. Average, median, standard deviation and 95% confidence interval were calculated for each station. Tidal, drift, latitude, free-air, Bouguer and terrain corrections were then applied. The results show that the gravitational field decreases as alluvium thickness increases across the axes of the Susquehanna River and Muncy Creek valleys. However, the location of the gravity low does not correspond with the present-day location of the West Branch of the Susquehanna River (WBSR), suggesting that the WBSR may have been constrained along Bald Eagle Mountain by a glacial lobe originating from the Muncy Creek Valley to the northeast. Using a 3-D inversion model, the topography of the bedrock-alluvium interface was determined over the extent of the study area using a density contrast of -0.8 g/cm3. Our results are consistent with the bedrock geometry of the area, and provide a low-cost, non-invasive and efficient method for exploring the subsurface and for supplementing existing well data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study focuses on an alluvial plain situated within a large meander of the Logan River at Josephville near Beaudesert which supports a factory that processes gelatine. The plant draws water from on site bores, as well as the Logan River, for its production processes and produces approximately 1.5 ML per day (Douglas Partners, 2004) of waste water containing high levels of dissolved ions. At present a series of treatment ponds are used to aerate the waste water reducing the level of organic matter; the water is then used to irrigate grazing land around the site. Within the study the hydrogeology is investigated, a conceptual groundwater model is produced and a numerical groundwater flow model is developed from this. On the site are several bores that access groundwater, plus a network of monitoring bores. Assessment of drilling logs shows the area is formed from a mixture of poorly sorted Quaternary alluvial sediments with a laterally continuous aquifer comprised of coarse sands and fine gravels that is in contact with the river. This aquifer occurs at a depth of between 11 and 15 metres and is overlain by a heterogeneous mixture of silts, sands and clays. The study investigates the degree of interaction between the river and the groundwater within the fluvially derived sediments for reasons of both environmental monitoring and sustainability of the potential local groundwater resource. A conceptual hydrogeological model of the site proposes two hydrostratigraphic units, a basal aquifer of coarse-grained materials overlain by a thick semi-confining unit of finer materials. From this, a two-layer groundwater flow model and hydraulic conductivity distribution was developed based on bore monitoring and rainfall data using MODFLOW (McDonald and Harbaugh, 1988) and PEST (Doherty, 2004) based on GMS 6.5 software (EMSI, 2008). A second model was also considered with the alluvium represented as a single hydrogeological unit. Both models were calibrated to steady state conditions and sensitivity analyses of the parameters has demonstrated that both models are very stable for changes in the range of ± 10% for all parameters and still reasonably stable for changes up to ± 20% with RMS errors in the model always less that 10%. The preferred two-layer model was found to give the more realistic representation of the site, where water level variations and the numerical modeling showed that the basal layer of coarse sands and fine gravels is hydraulically connected to the river and the upper layer comprising a poorly sorted mixture of silt-rich clays and sands of very low permeability limits infiltration from the surface to the lower layer. The paucity of historical data has limited the numerical modelling to a steady state one based on groundwater levels during a drought period and forecasts for varying hydrological conditions (e.g. short term as well as prolonged dry and wet conditions) cannot reasonably be made from such a model. If future modelling is to be undertaken it is necessary to establish a regular program of groundwater monitoring and maintain a long term database of water levels to enable a transient model to be developed at a later stage. This will require a valid monitoring network to be designed with additional bores required for adequate coverage of the hydrogeological conditions at the Josephville site. Further investigations would also be enhanced by undertaking pump testing to investigate hydrogeological properties in the aquifer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Upper Roper River is one of the Australia’s unique tropical rivers which have been largely untouched by development. The Upper Roper River catchment comprises the sub-catchments of the Waterhouse River and Roper Creek, the two tributaries of the Roper River. There is a complex geological setting with different aquifer types. In this seasonal system, close interaction between surface water and groundwater contributes to both streamflow and sustaining ecosystems. The interaction is highly variable between seasons. A conceptual hydrogeological model was developed to investigate the different hydrological processes and geochemical parameters, and determine the baseline characteristics of water resources of this pristine catchment. In the catchment, long term average rainfall is around 850 mm and is summer dominant which significantly influences the total hydrological system. The difference between seasons is pronounced, with high rainfall up to 600 mm/month in the wet season, and negligible rainfall in the dry season. Canopy interception significantly reduces the amount of effective rainfall because of the native vegetation cover in the pristine catchment. Evaporation exceeds rainfall the majority of the year. Due to elevated evaporation and high temperature in the tropics, at least 600 mm of annual rainfall is required to generate potential recharge. Analysis of 120 years of rainfall data trend helped define “wet” and “dry periods”: decreasing trend corresponds to dry periods, and increasing trend to wet periods. The period from 1900 to 1970 was considered as Dry period 1, when there were years with no effective rainfall, and if there was, the intensity of rainfall was around 300 mm. The period 1970 – 1985 was identified as the Wet period 2, when positive effective rainfall occurred in almost every year, and the intensity reached up to 700 mm. The period 1985 – 1995 was the Dry period 2, with similar characteristics as Dry period 1. Finally, the last decade was the Wet period 2, with effective rainfall intensity up to 800 mm. This variability in rainfall over decades increased/decreased recharge and discharge, improving/reducing surface water and groundwater quantity and quality in different wet and dry periods. The stream discharge follows the rainfall pattern. In the wet season, the aquifer is replenished, groundwater levels and groundwater discharge are high, and surface runoff is the dominant component of streamflow. Waterhouse River contributes two thirds and Roper Creek one third to Roper River flow. As the dry season progresses, surface runoff depletes, and groundwater becomes the main component of stream flow. Flow in Waterhouse River is negligible, the Roper Creek dries up, but the Roper River maintains its flow throughout the year. This is due to the groundwater and spring discharge from the highly permeable Tindall Limestone and tufa aquifers. Rainfall seasonality and lithology of both the catchment and aquifers are shown to influence water chemistry. In the wet season, dilution of water bodies by rainwater is the main process. In the dry season, when groundwater provides baseflow to the streams, their chemical composition reflects lithology of the aquifers, in particular the karstic areas. Water chemistry distinguishes four types of aquifer materials described as alluvium, sandstone, limestone and tufa. Surface water in the headwaters of the Waterhouse River, the Roper Creek and their tributaries are freshwater, and reflect the alluvium and sandstone aquifers. At and downstream of the confluence of the Roper River, river water chemistry indicates the influence of rainfall dilution in the wet season, and the signature of the Tindall Limestone and tufa aquifers in the dry. Rainbow Spring on the Waterhouse River and Bitter Spring on the Little Roper River (known as Roper Creek at the headwaters) discharge from the Tindall Limestone. Botanic Walk Spring and Fig Tree Spring discharge into the Roper River from tufa. The source of water was defined based on water chemical composition of the springs, surface and groundwater. The mechanisms controlling surface water chemistry were examined to define the dominance of precipitation, evaporation or rock weathering on the water chemical composition. Simple water balance models for the catchment have been developed. The important aspects to be considered in water resource planning of this total system are the naturally high salinity in the region, especially the downstream sections, and how unpredictable climate variation may impact on the natural seasonal variability of water volumes and surface-subsurface interaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Cedar River alluvial aquifer is the primary source of municipal water in the Cedar Rapids, Iowa, area. Since 1992, the U.S. Geological Survey, in cooperation with the City of Cedar Rapids, has investigated the hydrogeology and water quality of the Cedar River alluvial aquifer. This report describes a detailed analysis of the ground-water flow system in the alluvial aquifer, particularly near well field areas. The ground-water flow system in the Cedar Rapids area consists of two main components, the unconsolidated Quaternary deposits and the underlying carbonate bedrock that has a variable fracture density. Quaternary deposits consist of eolian sand, loess, alluvium, and glacial till. Devonian and Silurian bedrock aquifers overlie the Maquoketa Shale (Formation) of Ordovician age, a regional confining unit. Ground-water and surface-water data were collected during the study to better define the hydrogeology of the Cedar River alluvial aquifer and Devonian and Silurian aquifers. Stream stage and discharge, ground-water levels, and estimates of aquifer hydraulic properties were used to develop a conceptual ground-water flow model and to construct and calibrate a model of the flow system. This model was used to quantify the movement of water between the various components of the alluvial aquifer flow system and provide an improved understanding of the hydrology of the alluvial aquifer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

NEW DATA ON THE CHRONOLOGY OF THE VALE DO FORNO SEDIMENTARY SEQUENCE (LOWER TAGUS RIVER TERRACE STAIRCASE) AND ITS RELEVANCE AS FLUVIAL ARCHIVE OF THE MIDDLE PLEISTOCENE IN WESTERN IBERIA Pedro P. Cunha 1, António A. Martins 2, Jan-Pieter Buylaert 3,4, Andrew S. Murray 4, Luis Raposo 5, Paolo Mozzi 6, Martin Stokes 7 1 MARE - Marine and Environmental Sciences Centre, Department of Earth Sciences, University of Coimbra, Portugal: pcunha@dct.uc.pt 2 MARE - Marine and Environmental Sciences Centre, Dep. Geociências, University of Évora, Portugal; aam@uevora.pt 3 Centre for Nuclear Technologies, Technical University of Denmark, Risø Campus, Denmark; jabu@dtu.dk 4 Nordic Laboratory for Luminescence Dating, Aarhus University, Risø DTU, Denmark; anmu@dtu.dk 5 Museu Nacional de Arqueologia, Lisboa, Portugal; 3raposos@sapo.pt 6 Department of Geosciences, University of Padova, Italy; paolo.mozzi@unipd.it 7 School of Geography, Earth and Environmental Sciences, University of Plymouth, UK; m.stokes@plymouth.ac.uk The stratigraphic units that record the evolution of the Tagus River in Portugal (study area between Vila Velha de Ródão and Porto Alto villages; Fig. 1) have different sedimentary characteristics and lithic industries (Cunha et al., 2012): - a culminant sedimentary unit (the ancestral Tagus, before the drainage network entrenchment) – SLD13 (+142 to 262 m above river bed – a.r.b.; with probable age ca. 3,6 to 1,8 Ma), without artefacts; - T1 terrace (+84 to 180 m; ca. 1000? to 900 ka), without artefacts; - T2 terrace (+57 to 150 m; top deposits with a probable age ca. 600 ka), without artefacts; - T3 terrace (+43 to 113 m; ca. 460 to 360? ka), without artefacts; - T4 terrace (+26 to 55 m; ca. 335 a 155 ka), Lower Paleolithic (Acheulian) at basal and middle levels but early Middle Paleolithic at top levels; - T5 terrace (+5 to 34 m; 135 to 73 ka), Middle Paleolithic (Mousterian; Levallois technique); - T6 terrace (+3 to 14 m; 62 to 32 ka), late Middle Paleolithic (late Mousterian); - Carregueira Sands (aeolian sands) and colluvium (+3 a ca. 100 m; 32 to 12 ka), Upper Paleolithic to Epipaleolithic; - alluvial plain (+0 to 8 m; ca. 12 ka to present), Mesolithic and more recent industries. The differences in elevation (a.r.b.) of the several terrace staircases results from differential uplift due to active faults. Longitudinal correlation with the terrace levels indicates that a graded profile ca. 200 km long was achieved during terrace formation periods and a strong control by sea base level was determinant for terrace formation. The Neogene sedimentary units constituted the main source of sediments for the fluvial terraces (Fig. 2). Geomorphological mapping, coupled with lithostratigraphy, sedimentology and luminescence dating (quartz-OSL and K-feldspar post-IRIR290) were used in this study focused on the T4 terrace, which comprises a Lower Gravels (LG) unit and an Upper Sand (US) unit. The thick, coarse and dominantly massive gravels of the LG unit indicate deposition by a coarse bed-load braided river, with strong sediment supply, high gradient and fluvial competence, during conditions of rapidly rising sea level. Luminescence dating only provided minimum ages but it is probable that the LG unit corresponds to the earlier part of the MIS9 (ca. 335 to 325 ka), immediately postdating the incision promoted by the very low sea level (reaching ca. -140 m) during MIS10 (362 to 337 ka), a period of relatively cold climate conditions with weak vegetation cover on slopes and low sea level. Fig. 1. Main Portuguese reaches in which the Tagus River can be divided (Lower Tagus Basin): I – from the Spanish border to Arneiro (a general E–W trend, mainly consisting of polygonal segments); II – from Arneiro to Gavião (NE–SW); III – from Gavião to Arripiado (E–W); IV – from Arripiado to Vila Franca de Xira (NNE-SSW); V – from Vila Franca de Xira to the Atlantic shoreline. The faults considered to be the limit of the referred fluvial sectors are: F1 – Ponsul-Arneiro fault (WSW-ENE); F2 – Gavião fault (NW-SE); F3 – Ortiga fault (NW-SE); F4 – Vila Nova da Barquinha fault (W-E); F5 – Arripiado-Chamusca fault (NNE-SSW). 1 – estuary; 2 – terraces; 3 – faults; 4 – Tagus main channel. The main Iberian drainage basins are also represented (inset). The lower and middle parts of the US unit, comprising an alternation of clayish silts with paleosols and minor sands to the east (flood-plain deposits) and sand deposits to the west (channel belt), have a probable age of ca. 325 to 200 ka. This points to formation during MIS9 to MIS7, under conditions of high to medium sea levels and warm to mild conditions. The upper part of the US unit, dominated by sand facies and with OSL ages of ca. 200 to 154 ka, correlates with the early part of the MIS6. During this period, progradation resulted from climate deterioration and relative depletion of vegetation that promoted enhanced sediment production in the catchment, coupled with initiation of sea-level lowering that increased the longitudinal slope. The Vale do Forno and Vale da Atela archaeological sites (Alpiarça, central Portugal) document the earliest human occupation in the Lower Tagus River, well established in geomorphological and environmental terms, within the Middle Pleistocene. The Lower Palaeolithic sites were found on the T4 terrace (+26 m, a.r.b.). The oldest artefacts previously found in the LG unit, display crude bifacial forms that can be attributed to the Acheulian, with a probable age of ca. 335 to 325 ka. The T4 US unit has archaeological sites stratigraphically documenting successive phases of an evolved Acheulian, that probably date ca. 325 to 300 ka. Notably, these Lower Palaeolithic artisans were able to produce tools with different sophistication levels, simply by applying different strategies: more elaborated reduction sequences in case of bifaces and simple reduction sequences to obtain cleavers. Fig. 2. . Simplified geologic map of the Lower Tagus Cenozoic basin, adapted from the Carta Geológica de Portugal, 1/500000, 1992). The study area (comprising the Vale do Forno and Vale de Atela sites) is located on the more upstream sector of the Lower Tagus River reach IV, between Arripiado and Chamusca villages. 1 – alluvium (Holocene); 2 – terraces (Pleistocene); 3 – sands, silts and gravels (Paleogene to Pliocene); 4 – Sintra Massif (Cretaceous); 5 – limestones, marls, silts and sandstones (Mesozoic); 6 – quartzites (Ordovician); 7 – basement (Proterozoic to Palaeozoic); 8 – main fault. The main Portuguese reaches of the Tagus River are identified (I to V). The VF3 site (Milharós), containing a Final Acheulian industry, with fine and elaborated bifaces) found in a stratigraphic level located between the T4 terrace deposits and a colluvium associated with Late Pleistocene aeolian sands (32 to 12 ka), has an age younger than ca. 154 ka but much older than 32 ka. In the study area, the sedimentary units of the T4 terrace seem to record the river response to sea-level changes and climatically-driven fluctuations in sediment supply. REFERENCES Cunha P. P., Almeida N. A. C., Aubry T., Martins A. A., Murray A. S., Buylaert J.-P., Sohbati R., Raposo L., Rocha L., 2012, Records of human occupation from Pleistocene river terrace and aeolian sediments in the Arneiro depression (Lower Tejo River, central eastern Portugal). Geomorphology, vol. 165-166, pp. 78-90.