999 resultados para Allometric relationships


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantification of predator-prey body size relationships is essential to understanding trophic dynamics in marine ecosystems. Prey lengths recovered from predator stomachs help determine the sizes of prey most influential in supporting predator growth and to ascertain size-specific effects of natural mortality on prey populations (Bax, 1998; Claessen et al., 2002). Estimating prey size from stomach content analyses is often hindered because of the degradation of tissue and bone by digestion. Furthermore, reconstruction of original prey size from digested remains requires species-specific reference materials and techniques. A number of diagnostic guides for freshwater (Hansel et al., 1988) and marine (Watt et al., 1997; Granadeiro and Silva, 2000) prey species exist; however they are limited to specific geographic regions (Smale et al., 1995; Gosztonyi et al., 2007). Predictive equations for reconstructing original prey size from diagnostic bones in marine fishes have been developed in several studies of piscivorous fishes of the Northwest Atlantic Ocean (Scharf et al., 1998; Wood, 2005). Conversely, morphometric relationships for cephalopods in this region are scarce despite their importance to a wide range of predators, such as finfish (Bowman et al., 2000 ; Staudinger, 2006), elasmobranchs (Kohler, 1987), and marine mammals (Gannon et al., 1997; Williams, 1999).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The amount of space provided to animals governs important elements of their behaviour and, hence, is critical for their health and welfare. We review the use of allometric principles and equations to estimate the static space requirements of animals when standing and lying, and the space required for animals to feed, drink, stand-up and lie-down. We use the research literature relating to transportation and intensive housing of sheep and cattle to assess the validity of allometric equations for estimating space allowances. We investigated these areas because transportation and intensive housing provide points along a continuum in terms of the duration of confinement, (from hours to months) and spatial requirements are likely to increase with increasing duration of confinement, as animals will need to perform a greater behavioural repertoire for long-term survival, health and welfare. We find that, although there are theoretical reasons why allometric relationships to space allowances may vary slightly for different classes of stock, space allowances that have been demonstrated to have adverse effects on animal welfare during transportation correlated well with an inability to accommodate standing animals, as estimated from allometry. For intensive housing, we were able to detect a space allowance below which there were adverse effects on welfare. For short duration transportation during which animals remain standing, a space allowance per animal described by the allometric equation: area (m^2) = 0.020W^0.66, where W = liveweight (kg), would appear to be appropriate. Where it is desirable for all animals to lie simultaneously, then a minimum space allowance per animal described by the allometric equation: area (m^2) = 0.027W^0.66 appears to permit this, given that animals in a group time-share space. However, there are insufficient data to determine whether this allowance onboard a vehicle/vessel would enable animals to move and access food and water with ease. In intensive housing systems, a minimum space allowance per animal described by the allometric equation: area (m^2) = 0.033W^0.66 appears to be the threshold below which there are adverse effects on welfare. These suggested space allowances require verification with a range of species under different thermal conditions and, for transportation, under different conditions of vehicular/vessel stability. The minimum length of trough per animal (L in m) required for feeding and drinking can be determined from L = 0.064W^0.33, with the number of animals required to feed/drink simultaneously taken into account, together with any requirement to minimise competition. This also requires verification with a range of species. We conclude that allometric relationships are an appropriate basis for the formulation of space allowances for livestock.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

To quantify the impact that planting indigenous trees and shrubs in mixed communities (environmental plantings) have on net sequestration of carbon and other environmental or commercial benefits, precise and non-biased estimates of biomass are required. Because these plantings consist of several species, estimation of their biomass through allometric relationships is a challenging task. We explored methods to accurately estimate biomass through harvesting 3139 trees and shrubs from 22 plantings, and collating similar datasets from earlier studies, in non-arid (>300mm rainfallyear-1) regions of southern and eastern Australia. Site-and-species specific allometric equations were developed, as were three types of generalised, multi-site, allometric equations based on categories of species and growth-habits: (i) species-specific, (ii) genus and growth-habit, and (iii) universal growth-habit irrespective of genus. Biomass was measured at plot level at eight contrasting sites to test the accuracy of prediction of tonnes dry matter of above-ground biomass per hectare using different classes of allometric equations. A finer-scale analysis tested performance of these at an individual-tree level across a wider range of sites. Although the percentage error in prediction could be high at a given site (up to 45%), it was relatively low (<11%) when generalised allometry-predictions of biomass was used to make regional- or estate-level estimates across a range of sites. Precision, and thus accuracy, increased slightly with the level of specificity of allometry. Inclusion of site-specific factors in generic equations increased efficiency of prediction of above-ground biomass by as much as 8%. Site-and-species-specific equations are the most accurate for site-based predictions. Generic allometric equations developed here, particularly the generic species-specific equations, can be confidently applied to provide regional- or estate-level estimates of above-ground biomass and carbon. © 2013 Elsevier B.V.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

An increasing importance is assigned to the estimation and verification of carbon stocks in forests. Forestry practice has several long-established and reliable methods for the assessment of aboveground biomass; however we still miss accurate predictors of belowground biomass. A major windthrow event exposing the coarse root systems of Norway spruce trees allowed us to assess the effects of contrasting soil stone and water content on belowground allocation. Increasing stone content decreases root/shoot ratio, while soil waterlogging leads to an increase in this ratio. We constructed allometric relationships for belowground biomass prediction and were able to show that only soil waterlogging significantly impacts model parameters. We showed that diameter at breast height is a reliable predictor of belowground biomass and, once site-specific parameters have been developed, it is possible to accurately estimate belowground biomass in Norway spruce.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We studied ontogenetic variation in the shape of the skull among species of Caiman using principal component analysis. Comparison of multivariate allometric coefficients and ontogenetic trends between size and shape reveals that C. sclerops and C. yacare have similar ontogenetic processes, and they are more related to each other than either is to C. latirostris. Allometric relationships of the characters measured are similar in all species studied. The greater differences were in the width measurements, with higher coefficients in shape (second principal component) for C. latirostris, and length measurements with higher coefficients in shape for C. yacare and C. sclerops. The ontogenetic process leading to change in skull shape in the group seems to be plesiomorphic for elongation and derived for broadening. Statistical comparison of the ontogenetic trends with models of allometric heterochrony suggests that C. latirostris has diverged from the other species by a neotenic process, and that C. sclerops is separated from C. yacare by ontogenetic scaling (progenesis).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The allometric relationships for plant annualized biomass production (“growth”) rates, different measures of body size (dry weight and length), and photosynthetic biomass (or pigment concentration) per plant (or cell) are reported for multicellular and unicellular plants representing three algal phyla; aquatic ferns; aquatic and terrestrial herbaceous dicots; and arborescent monocots, dicots, and conifers. Annualized rates of growth G scale as the 3/4-power of body mass M over 20 orders of magnitude of M (i.e., G ∝ M3/4); plant body length L (i.e., cell length or plant height) scales, on average, as the 1/4-power of M over 22 orders of magnitude of M (i.e., L ∝ M1/4); and photosynthetic biomass Mp scales as the 3/4-power of nonphotosynthetic biomass Mn (i.e., Mp ∝ Mn3/4). Because these scaling relationships are indifferent to phylogenetic affiliation and habitat, they have far-reaching ecological and evolutionary implications (e.g., net primary productivity is predicted to be largely insensitive to community species composition or geological age).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Monthly samples of L. australis, V. spongiartum, P. bicolor and D. cuneata were collected over a period of 12 months from Princess Royal Harbour, Western Australia. Preliminary information on densities and biomass is given. Gonad histology points to seasonal reproductive cycles with autumn spawning in P. bicolor and D. cuneata and irregular spawning in V. spongiantm and L. australis. However, L. australis did show two peaks of larval brooding in the study period. Length-frequency data are discussed in the light of the proposed reproductive patterns for the four species. Allometric relationships between length and both height and width for all species are described and their value to each species assessed. Populations of L. australis from different habitats show significant differences in shell shape.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We are experiencing a global extinction crisis as a result of climate change and human-induced alteration of natural habitats, with large predators at high trophic levels in food webs being particularly vulnerable. Unfortunately, there is a scarcity of food web data that can be used to assess how species extinctions alter the structure and stability of temporally and spatially replicated networks. We established a series of large experimental mesocosms in a shallow subtidal benthic marine system and constructed food webs for each replicate. After 6 months of community assembly, we removed large predators from the core communities of 20 experimental food webs, based on the strength of their trophic interactions, and monitored the changes in the networks' structure and stability over an 8-month period. Our analyses revealed the importance of allometric relationships and size-structuring in natural communities as a means of preserving food web structure and sustainability, despite significant changes in the diversity, stability and productivity of the system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Understanding and predicting the dynamics of multispecies systems generally require estimates of interaction strength among species. Measuring interaction strength is difficult because of the large number of interactions in any natural system, long-term feedback, multiple pathways of effects between species pairs, and possible nonlinearities in interaction-strength functions. Presently, the few studies that extensively estimate interaction strength suggest that distributions of interaction strength tend to be skewed toward few strong and many weak interactions. Modeling studies indicate that such skewed patterns tend to promote system stability and arise during assembly of persistent communities. Methods for estimating interaction strength efficiently from traits of organisms, such as allometric relationships, show some promise. Methods for estimating community response to environmental perturbations without an estimate of interaction strength may also be of use. Spatial and temporal scale may affect patterns of interaction strength, but these effects require further investigation and new multispecies modeling frameworks. Future progress will be aided by development of long-term multispecies time series of natural communities, by experimental tests of different methods for estimating interaction strength, and by increased understanding of nonlinear functional forms.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

1. Waterbirds are considered to import large quantities of nutrients to freshwater bodies but quantification of these loadings remains problematic. We developed two general models to calculate such allochthonous nutrient inputs considering food intake, foraging behaviour and digestive performance of waterbirds feeding in terrestrial habitats: an intake model (IM), mainly based on an allometric relationship for energy requirements and a dropping model (DM), based on allometric relationships for defaecation.

2. Reviewed data of nitrogen (N) and phosphorus (P) content of herbivorous food varied according to diet type (foliage, seeds and roots), season and fertilization. For model parameterization average foliage diet contained 38.20 mg N g−1 and 3.21 mg P g−1 (dry weight), whereas mean faeces composition was 45.02 mg N g−1 and 6.18 mg P g−1.

3. Daily allochthonous nutrient input increased with body mass ranging from 0.29 g N and 0.03 g P in teals Anas crecca to 5.69 g N and 0.57 g P in mute swans Cygnus olor. Results from IM differed from those of DM from ducks to swans by 63–108% for N and by −4 to 23% for P. Model uncertainty was lowest for the IM and mainly caused by variation in estimates of food retention time (RT). In DM food RT and dropping mass determined model uncertainty in similar extent.

4. Exemplarily applying the models to Dutch wetlands resulted in mean annual contribution of herbivorous waterbirds to allochthonous nutrient loading of 382.8 ± 167.1 tonnes N a−1and 34.7 ± 2.3 tonnes P a−1, respectively, which corresponds to annual surface-water loadings of 1.07 kg N ha−1 and 0.10 kg P ha−1.

5. There was a distinct seasonal pattern with peak loadings in January, when bird abundances were highest. Lowest inputs were in August, when bird abundance and nutrient content in food was low and birds foraged less in terrestrial habitats. Three-quarters of all nutrient input was contributed by greater white-fronted goose Anser albifrons, greylag goose Anser anser, wigeon Anas penelope and barnacle goose Branta leucopsis alone.

6. We provide general, easy to use calculation methods for the estimation of allochthonous nutrient inputs by waterbirds, which are applicable to a range of waterbird species, a variety of potential diets and feeding behaviours, and across spatial scales. Such tools may greatly assist in the planning and execution of management actions for wetland nutrient budgets.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The flight range of migrating birds depends crucially on the amount of fuel stored by the bird prior to migration or taken up en route at stop-over sites. However, an increase in body mass is associated with an increase in energetic costs, counteracting the benefit of fuel stores. Water imbalance, occurring when water loss exceeds metabolic water production, may constitute another less well recognised problem limiting flight range. The main route of water loss during flight is via the lungs; the rate of loss depends on ambient temperature, relative humidity and ventilatory flow and increases with altitude. Metabolite production results in an increased plasma osmolality, also endangering the proper functioning of the organism during flight. Energetic constraints and water-balance problems may interact in determining several aspects of flight behaviour, such as altitude of flight, mode of flight, lap distance and stop-over duration. To circumvent energetic and water-balance problems, a bird could migrate in short hops instead of long leaps if crossing of large ecological barriers can be avoided. However, although necessitating larger fuel stores and being more expensive, migration by long leaps may sometimes be faster than by short hops. Time constraints are also an important factor in explaining why soaring, which conserves energy and water, occurs exclusively in very large species: small birds can soar at low speeds only. Good navigational skills involving accurate orientation and assessment of altitude and air and ground speed assist in avoiding physiological stress during migration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The sizes at morphological and physiological maturity of male and female Arenaeus cribrarius were estimated to determine if both events are synchronous. Animals were captured with otto-trawls at Ubatuba, Brazil. A total of 2356 specimens, 977 males and 1379 females, were obtained. The major carapace width without spines (CW), the propodus length of the major cheliped (PL) and the width of the 5th abdominal somite (AW) were measured with vernier calipers. Allometric relationships and gonadal development were analyzed to determine the maturity in both sexes. The size at the onset of male morphological maturity was estimated at CW 52 mm, smaller than the CW 63.4 mm physiological maturity size observed. For females, these events are synchronous since both estimates converged at CW 59.7 mm. The onset of functional sexual maturity in A. cribrarius at CW 63.4 and 59.7 mm in males and females, respectively, would indicate a minimum size of CW 64 mm for fishing purposes. Differences between allometric and gonadal estimates indicate the importance of considering both methods. A comparison of the present results with other available data in portunid crabs is provided.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)