999 resultados para Alley cropping system
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The demand for biomass for bioenergy has increased rapidly in industrialized countries in the recent years. Biogenic energy carriers are known to reduce CO2 emissions. However, the resource-inefficient production of biomass often caused negative impacts on the environment, e.g. biodiversity losses, nitrate leaching, and erosion. The detrimental effects evolved mainly from annual crops. Therefore, the aim of modern bioenergy cropping systems is to combine yield stability and environmental benefits by the establishment of mixed-cropping systems. A particular emphasis is on perennial crops which are perceived as environmentally superior to annual crops. Agroforestry systems represent such mixed perennial cropping systems and consist of a mix of trees and arable crops or grassland within the same area of land. Agroforestry practices vary across the globe and alley cropping is a type of agroforestry system which is well adapted to the temperate zone, with a high degree of mechanization. Trees are planted in rows and crops are planted in the alleyways, which facilitates their management by machinery. This study was conducted to examine a young alley cropping system of willows and two grassland mixtures for bioenergy provision under temperate climate conditions. The first part of the thesis identified possible competition effects between willows and the two grassland mixtures. Since light seemed to be the factor most affecting the yield performance of the understory in temperate agroforestry systems, a biennial in situ artificial shade experiment was established over a separate clover-grass stand to quantify the effects of shade. Data to possible below- and aboveground interactions among willows and the two grassland mixtures and their effects on productivity, sward composition, and quality were monitored along a tree-grassland interface within the alleys. In the second part, productivity of the alley cropping system was examined on a triennial time frame and compared to separate grassland and willow stands as controls. Three different conversion technologies (combustion of hay, integrated generation of solid fuel and biogas from biomass, whole crop digestion) were applied to grassland biomass as feedstock and analyzed for its energetic potential. The energetic potential of willow wood chips was calculated by applying combustion as conversion technique. Net energy balances of separate grassland stands, agroforestry and pure willow stands evaluated their energy efficiency. Results of the biennial artificial shade experiment showed that severe shade (80 % light reduction) halved grassland productivity on average compared to a non-shaded control. White clover as heliophilous plant responded sensitively to limited radiation and its dry matter contribution in the sward decreased with increasing shade, whereas non-leguminous forbs (mainly segetal species) benefited. Changes in nutritive quality could not be confirmed by this experiment. Through the study on interactions within the alleys of the young agroforestry system it was possible to outline changes of incident light, soil temperature and sward composition of clover-grass along the tree-grassland interface. Nearly no effects of trees on precipitation, soil moisture and understory productivity occurred along the interface during the biennial experiment. Considering the results of the productivity and the net energy yield alley cropping system had lower than pure grassland stands, irrespective of the grassland seed mixture or fertilization, but was higher than that for pure willow stands. The comparison of three different energetic conversion techniques for the grassland biomass showed highest net energy yields for hay combustion, whereas the integrated generation of solid fuel and biogas from biomass (IFBB) and whole crop digestion performed similarly. However, due to the low fuel quality of hay, its direct combustion cannot be recommended as a viable conversion technique, whereas IFBB fuels were of a similar quality to wood chip from willow.
Resumo:
The Agricultural Production Systems slMulator, APSIM, is a cropping system modelling environment that simulates the dynamics of soil-plant-management interactions within a single crop or a cropping system. Adaptation of previously developed crop models has resulted in multiple crop modules in APSIM, which have low scientific transparency and code efficiency. A generic crop model template (GCROP) has been developed to capture unifying physiological principles across crops (plant types) and to provide modular and efficient code for crop modelling. It comprises a standard crop interface to the APSIM engine, a generic crop model structure, a crop process library, and well-structured crop parameter files. The process library contains the major science underpinning the crop models and incorporates generic routines based on physiological principles for growth and development processes that are common across crops. It allows APSIM to simulate different crops using the same set of computer code. The generic model structure and parameter files provide an easy way to test, modify, exchange and compare modelling approaches at process level without necessitating changes in the code. The standard interface generalises the model inputs and outputs, and utilises a standard protocol to communicate with other APSIM modules through the APSIM engine. The crop template serves as a convenient means to test new insights and compare approaches to component modelling, while maintaining a focus on predictive capability. This paper describes and discusses the scientific basis, the design, implementation and future development of the crop template in APSIM. On this basis, we argue that the combination of good software engineering with sound crop science can enhance the rate of advance in crop modelling. Crown Copyright (C) 2002 Published by Elsevier Science B.V. All rights reserved.
Resumo:
Knowledge about the fate of fertilizer nitrogen in agricultural systems is essential for the improvement of management practices in order to maximize nitrogen (N) recovery by the crop and reduce N losses from the system to a minimum. This study involves fertilizer management practices using the 15N isotope label applied in a single rate to determine the fertilizer-N balance in a particular soil-coffee-atmosphere system and to deepen the understanding of N plant dynamics. Five replicates consisting of plots of about 120 plants each were randomly defined within a 0.2 ha coffee plantation planted in 2001, in Piracicaba, SP, Brazil. Nine plants of each plot were separated in sub-plots for the 15N balance studies and treated with N rates of 280 and 350 kg ha-1 during 2003/2004 and 2004/2005, respectively, both of them as ammonium sulfate enriched to a 15N abundance of 2.072 atom %. Plant shoots were considered as separate parts: the orthotropic central branch, productive branches, leaves of productive branches, vegetative branches, leaves of vegetative branches and fruit. Litter, consisting of dead leaves accumulated below the plant canopy, was measured by the difference between leaves at harvest and at the beginning of the following flowering. Roots and soil were sampled down to a depth of 1.0 at intervals of 0.2 m. Samples from the isotopic sub-plots were used to evaluate total N and 15N, and plants outside sub-plots were used to evaluate dry matter. Volatilization losses of NH3 were estimated using special collectors. Leaching of fertilizer-N was estimated from deep drainage water fluxes and 15N concentrations of the soil solution at 1 m soil depth. At the end of the 2-year evaluation, the recovery of 15N applied as ammonium sulfate was 19.1 % in aerial plant parts, 9.4 % in the roots, 23.8 % in the litter, 26.3 % in the fruit and 12.6 % remaining in the 0_1.0 m soil profile. Annual leaching and volatilization losses were very small (2.0 % and 0.9 %, respectively). After two years, only 6.2 % N were missing in the balance (100 %) which can be attributed to other non-estimated compartments and experimental errors. Results show that an enrichment of only 2 % atom 15N allows the study of the partition of fertilizer-N in a perennial crop such as coffee during a period of two years.
Resumo:
Selostus: Viljelyjärjestelmän vaikutus maan kasvukuntoa määrääviin tekijöihin
Resumo:
Intensive swine production is an important agricultural and economical activity in Europe. The high availability of pig slurry (PS) lead to attractive fertilization strategy to reduce costs, therefore is mainly applied as fertilizer in agricultural systems. The optimization N fertilization in these areas should be taken in into to avoid nitrates losses by lixiviation and to achieve maximum efficiency in crop nutrition. Many studies have shown that PS applications can achieve satisfactory yields in different crops by partially or completely replacing synthetic fertilizers. In addition, for the last years, in Northeast Spain (Catalonia) has been widely extended the double-cropping forage system.
Resumo:
Currently, one of the biggest challenges faced by organic no-tillage farming is weed control. Thus, the use of cropping practices that help in the control of weeds is extremely important. The objective of this study was to evaluate population density and level of weed infestation in an organic no-tillage corn cropping system under different soil covers. The experiment was conducted in a randomized block design with six repetitions and five treatments, consisting of three soil covers in an organic no-tillage system, and an organic and a conventional system, both without soil cover. The treatments with soil cover used a grass species represented by the black oat, a leguminous species represented by the white lupine, and intercropping between both species. Corn was sown with spacing of 1.0 m between rows and 0.20 m between plants, using the commercial hybrid AG 1051. Infestation in corn was evaluated at stages V5 and V10, and weed density was evaluated at stage V5. The use of black oat straw alone or intercropped with white lupine, in the organic no-tillage corn cropping system, reduced the percentage of weed infestation and absolute weed density. Management-intensive systems and systems without soil cover showed higher relative densities for species Oxalis spp., Galinsoga quadriradiata and Stachys arvensis. The species Cyperus rotundus showed the highest relative density on organic no-tillage corn cropping systems. Black oat straw in the organic no-tillage cropping system limited the productive potential of corn.
Resumo:
Chickpea yield potential is limited by weed competition in typical chickpea growing areas of Pakistan where zero tillage crop grown on moisture conserved from rains received during the months of September and August. The objective of this work was to evaluate the growth and yield characteristics of chickpea grown in coexistence with increasing densities of wild onion (Asphodelus tenuifolius). The experiment was comprised of six density levels viz. zero, 20, 40, 80, 160 and 320 plants m-2 of A. tenuifolius. A decrease in chickpea primary and secondary branches per plant, pods per plant, seeds per pod, 100-seed weight and seed yield was observed due to more accumulation of dry matter per increasing densities of A. tenuifolius. The increase in A. tenuifolius density accelerated chickpea yield losses and reached the maximum values of 28, 35, 42, 50, 58 and 96% at 20, 40, 80, 160 and 320 A. tenuifolius plants m-2, respectively. The yield loss estimation model showed that chickpea losses with infinite A. tenuifolius density were 60%. Yield reduction could be predicted by 2.52% with increase of one A. tenuifolius plant m-2. It is concluded that A. tenuifolius has a strong influence on chickpea seed yield and showed a linear response at the range of densities studied.
Resumo:
Growing corn mixed with forage crops can be an alternative for pasture and Mulch production during relatively dry winters in tropical areas, making no-till feasible in some regions. However, little is known about nutrient dynamics in this cropping system. The objective of the present work was to evaluate K dynamics in a production system in which corn was either grown as a sole crop or mixed with Brachiaria brizantha. In the second year of the experiment, nitrogen rates ranging from 0 to 200 kg ha(-1) were applied to the system. Dry matter yields and potassium contents in the soil, as well as residues and plants were determined at corn planting and harvest. Potassium balance in the system was calculated. Corn grain yield in mixed crop responded up to 200 kg ha(-1) N. The introduction of brachiaria in the system resulted in higher amounts of straw on the soil Surface and higher K recycling. Soil exchangeable K balance showed an excess K for both N rates only in the mixed system, however, when non-exchangeable K was also included in calculations, excess K was found in both mixed and sole corn systems. Large amounts of non-exchangeable K were taken up in the system involving brachiaria, which showed a considerable capacity in recycling K, increasing its contents in the surface soil layer. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
In irrigated areas where cover crop establishment can be assured, consequent soil or nutrient conservation could increase sustainability of cropping systems. Replacing bare fallow with cover crops may increase sustainability by enhancing soil aggregate stability, water retention capacity or controlling nitrate leaching. Nevertheless, adoption of cover crops increase evapotranspiration and reduce water percolation beyond the root systems; therefore, it could lead to salt accumulation in the upper soil layers. This study was conducted during four years to determine the effect of replacing bare fallow by a cover crop on soil salt accumulation and salt leaching in an irrigated maize production system.
Resumo:
The tree leguminous gliricídia (Gliricidia sepium), acácia (Acacia mangium), leucena (Leucaena leucocephala) and sombreiro (Clitoria fairchildiana) are indicated for agroforestry systems, reclamation of degraded lands, reforestation and other purposes in the wet tropic. Despite the importance of legumes the preamazon region it is lacking in information about the symbiotic capacity and diversity of indigenous rhizobia of these legumes. The aim of this work was to evaluate the phenotypic and genetic diversity of rhizobia species nodulating gliricidia sombreiro, leucena and acacia in the Maranhão pre-Amazon region and authenticate isolates of these species in siratro (Macroptilium atropurpureum). For this they were installed two experiments. Sampling was carried out on a alley cropping system, was sampled 20 plants of each species by collecting 10 nodules per plant. It was made isolation, cultural characterization, partial 16S rRNA gene sequencing and analysis of the symbiotic ability of bacterial strains with siratro. The authentication experiment was done in two steps for each legume (gliricidia, acácia, sombreiro and leucena), in the greenhouse and in a completely randomized design with three replications with sterile Hoagland nutrient solution as substrate. Gliricídia, Sombreiro, leucena and acacia are colonized by distinct groups of rhizobia. Gliricidia nodulate preferably with Rhizobium, sombreiro and acacia nodulate preferably with Bradyrhizobium and leucena has Mesorhizobium main symbiote. Endophytic strains of ten genera were found colonizing the gliricidia, sombrero, leucena and acacia nodules and a strain of Arthrobacter sp. had a positive nodulation with siratro. This is the first report on isolation of Methylobacterium sp. in gliricidia nodules and endophytic ability of Terriglobus sp. strains. Indigenous strains of pre-Amazon region of Bradyrhizobium, Mesorhizobium and Rhizobium genus nodulate with siratro, but are ineficiente or had low efficiency to promote their growth.
Resumo:
Pós-graduação em Agronomia (Agricultura) - FCA
Resumo:
Pós-graduação em Engenharia e Ciência de Alimentos - IBILCE
Resumo:
A sustainable management of soils with low natural fertility on family farms in the humid tropics is a great challenge and overcoming it would be an enormous benefit for the environment and the farmers. The objective of this study was to assess the environmental and agronomic benefits of alley cropping, based on the evaluation of C sequestration, soil quality indicators, and corn yields. Combinations of four legumes were used in alley cropping systems in the following treatments: Clitoria fairchildiana + Cajanus cajan; Acacia mangium + Cajanus cajan; Leucaena leucocephala + Cajanus cajan; Clitoria fairchildiana + Leucaena leucocephala; Leucaena leucocephala + Acacia mangium and a control. Corn was used as a cash crop. The C content was determined in the different compartments of soil organic matter, CEC, available P, base saturation, percentage of water saturation, the period of the root hospitality factor below the critical level and corn yield. It was concluded that alley cropping could substitute the slash and burn system in the humid tropics. The main environmental benefit of alley cropping is the maintenance of a dynamic equilibrium between C input and output that could sustain up to 10 Mg ha-1 of C in the litter layer, decreasing atmospheric CO2 levels. Alley cropping is also beneficial from the agricultural point of view, because it increases base saturation and decreases physical resistance to root penetration in the soil layer 0 - 10 cm, which ensures the increase and sustainability of corn yield.