954 resultados para Allergen-induced Response


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Allergen-induced asthma is the leading form of asthma and a chronic condition worldwide. Common allergens are known to contribute to the pathogenesis of this disease. Murine models of allergic asthma have mostly used an intraperitoneal route of sensitization (not airway) to study this disease. Allergic asthma pathophysiology involves the activation of TH2-specific cells, which triggers production of IgE antibodies, the up-regulation of TH2-specific cytokines (i.e. IL-4, IL-5, IL-9 and IL-13), increased airway eosinophilia, and mucin hypersecretion. Although there are several therapeutics currently treating asthmatic patients, some of these treatments can result in drug tolerance and may be linked to increased mortality. CpG oligodeoxynucleotides (ODNs) is a synthetic ligand that targets Toll-like Receptor (TLR) 9. It has been evaluated as a therapeutic agent for the treatment of cancer, infectious diseases, and for treating allergy and asthma. PUL-042 is also a synthetic TLR ligand and is composed of two agonists against TLR2/6 heterodimer and TLR9. Previous studies have evaluated PUL-042 for its ability to confer resistance against bacterial and viral lung infection. These findings, combined with studies performed using CpG ODNs, led to speculation that PUL-042 dampens the immune response in allergen-induced asthma. My thesis research investigated airway route sensitization and airway delivery of PUL-042 to evaluate its effects in reducing an allergen-induced asthma phenotype in a murine model. The results of this study contribute to the foundation for future investigations to evaluate the efficacy of PUL-042 as a novel therapy in allergic-asthma disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Humanized murine models comprise a new tool to analyze novel therapeutic strategies for allergic diseases of the intestine.¦OBJECTIVE: In this study we developed a human PBMC-engrafted murine model of allergen-driven gut inflammation and analyzed the underlying immunologic mechanisms.¦METHODS: Nonobese diabetic (NOD)-scid-γc(-/-) mice were injected intraperitoneally with human PBMCs from allergic donors together with the respective allergen or not. Three weeks later, mice were challenged with the allergen orally or rectally, and gut inflammation was monitored with a high-resolution video miniendoscopic system, as well as histologically.¦RESULTS: Using the aeroallergens birch or grass pollen as model allergens and, for some donors, also hazelnut allergen, we show that allergen-specific human IgE in murine sera and allergen-specific proliferation and cytokine production of human CD4(+) T cells recovered from spleens after 3 weeks could only be measured in mice treated with PBMCs plus allergen. Importantly, these mice had the highest endoscopic scores evaluating translucent structure, granularity, fibrin, vascularity, and stool after oral or rectal allergen challenge and a strong histologic inflammation of the colon. Analyzing the underlying mechanisms, we demonstrate that allergen-associated colitis was dependent on IgE, human IgE receptor-expressing effector cells, and the mediators histamine and platelet-activating factor.¦CONCLUSION: These results demonstrate that allergic gut inflammation can be induced in human PBMC-engrafted mice, allowing the investigation of pathophysiologic mechanisms of allergic diseases of the intestine and evaluation of therapeutic interventions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study examined anxiety as a potential moderator of stereotype change. Previous work has independently demonstrated an increase in stereotyping under conditions of high anxiety as well as following attempts to suppress stereotypic thought. The combination of these two antecedent conditions might thus be expected to produce an additive increase in stereotyping. In contrast to an additive pattern, however, we observed an interaction between anxiety and suppression task instruction. Whilst both the instruction to suppress (in the absence of anxiety) or anxiety (in the absence of the instruction to suppress) did independently increase stereotyping, when the two co-occurred, there was no change. We explain this interaction by considering work from neuropsychological domain on response perseverance: cognitive overload (one consequence of anxiety) may inhibit the ability to switch between modes of perception. These findings suggest a potentially important moderator for attempts to suppress social stereotypes, and point to the efficacy of integrating work from diverse domains for understanding the operation of executive processes in person perception.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of chronic mild prenatal stress on leukocyte infiltration into the airways was investigated in rat offspring. The chronic prenatal stress consisted of transitory and variable changes in the rat's living conditions. Offspring at adult age were actively sensitized (day 0) and intratracheally challenged (day 14) with ovalbumin. Bronchoalveolar lavage was performed in the offspring at 48 h after intratracheal challenge with ovalbumin. A significant increase in total leukocyte infiltration was observed in the non-stressed offspring group and this was associated with a marked recruitment of eosinophils without a significant effect on the influx of neutrophils and mononuclear cells. In the prenatal stressed offspring, the counts of both total leukocyte and eosinophils, as well as mononuclear cells, was increased by 50% compared to the non-stressed offspring. We provide here the first experimental evidence that chronic mild unpredictable prenatal stress produces a marked increase in the allergen-induced airway inflammation in the rat offspring.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prophylactic vaccines are an effective strategy to prevent development of many infectious diseases. With new and re-emerging infections posing increasing risks to food stocks and the health of the population in general, there is a need to improve the rationale of vaccine development. One key challenge lies in development of an effective T cell-induced response to subunit vaccines at specific sites and in different populations. Objectives: In this review, we consider how a proteomic systems-based approach can be used to identify putative novel vaccine targets, may be adopted to characterise subunit vaccines and adjuvants fully. Key findings: Despite the extensive potential for proteomics to aid our understanding of subunit vaccine nature, little work has been reported on identifying MHC 1-binding peptides for subunit vaccines generating T cell responses in the literature to date. Summary: In combination with predictive and structural biology approaches to mapping antigen presentation, proteomics offers a powerful and as yet un-tapped addition to the armoury of vaccine discovery to predict T-cell subset responses and improve vaccine design strategies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim: Dipalmitoylphosphatidycholine (DPPC) is the characteristic and main constituent of surfactant. Adsorption of surfactant to epithelial surfaces may be important in the masking of receptors. The aims of the study were to (i) compare the quantity of free DPPC in the airways and gastric aspirates of children with gastroesophageal reflux disease (GORD) to those without and (ii) describe the association between free DPPC levels with airway cellular profile and capsaicin cough sensitivity. Methods: Children aged < 14 years were defined as 'coughers' if a history of cough in association with their GORD symptoms was elicited before gastric aspirates and nonbronchoscopic bronchoalveolar lavage (BAL) were obtained during elective flexible upper gastrointestinal endoscopy. GORD was defined as histological presence of reflux oesophagitis. Spirometry and capsaicin cough-sensitivity test was carried out in children aged > 6 years before the endoscopy. Results: Median age of the 68 children was 9 years (interquartile range (IQR) 7.2). Median DPPC level in BAL of children with cough (72.7 mu g/mL) was similar to noncoughers (88.5). There was also no significant difference in DPPC levels in both BAL and gastric aspirates of children classified according to presence of GORD. There was no correlation between DPPC levels and cellular counts or capsaicin cough-sensitivity outcome measures. Conclusion: We conclude that free DPPC levels in the airways and gastric aspirate is not influenced by presence of cough or GORD defined by histological presence of reflux oesophagitis. Whether quantification of adsorbed surfactant differs in these groups remain unknown. Free DPPC is unlikely to have a role in masking of airway receptors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anti-IgE, omalizumab, inhibits the allergen response in patients with asthma. This has not been directly related to changes in inflammatory conditions. We hypothesized that anti-IgE exerts its effects by reducing airway inflammation. To that end, the effect of anti-IgE on allergen-induced inflammation in bronchial biopsies in 25 patients with asthma was investigated in a randomized, double-blind, placebo-controlled study. Allergen challenge followed by a bronchoscopy at 24 h was performed at baseline and after 12 weeks of treatment with anti-IgE or placebo. Provocative concentration that causes a 20% fall in forced expiratory volume in 1 s (PC(20)) methacholine and induced sputum was performed at baseline, 8 and 12 weeks of treatment. Changes in the early and late responses to allergen, PC(20), inflammatory cells in biopsies and sputum were assessed. Both the early and late asthmatic responses were suppressed to 15.3% and 4.7% following anti-IgE treatment as compared with placebo (P < 0.002). This was paralleled by a decrease in eosinophil counts in sputum (4-0.5%) and postallergen biopsies (15-2 cells/0.1 mm(2)) (P < 0.03). Furthermore, biopsy IgE+ cells were significantly reduced between both the groups, whereas high-affinity IgE receptor and CD4+ cells were decreased within the anti-IgE group. There were no significant differences for PC(20) methacholine. The response to inhaled allergen in asthma is diminished by anti-IgE, which in bronchial mucosa is paralleled by a reduction in eosinophils and a decline in IgE-bearing cells postallergen without changing PC(20) methacholine. This suggests that the benefits of anti-IgE in asthma may be explained by a decrease in eosinophilic inflammation and IgE-bearing cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims: There has been emerging interest in the prenatal determinants of respiratory disease. In utero factors have been reported to play a role in airway development, inflammation, and remodeling. Specifically, prenatal exposure to endotoxins might regulate tolerance to allergens later in life. The present study investigated whether prenatal lipopolysaccharide (LPS) administration alters subsequent offspring allergen-induced inflammatory response in adult rats. Main methods: Pregnant Wistar rats were treated with LPS (100 mu g/kg, i.p.) on gestation day 9.5 and their ovariectomized female offspring were sensitized and challenged with OVA later in adulthood. The bronchoalveolar lavage (BAL) fluid, peripheral blood, bone marrow leukocytes and passive cutaneous anaphylaxis were evaluated in these 75-day-old pups. Key findings: OVA sensitized pups of NaCl treated rats showed an increase of leucocytes in BAL after OVA challenge. This increase was attenuated, when mothers were exposed to a single LPS injection early in pregnancy. Thus, LPS prenatal treatment resulted in (1) lower increased total and differential (macrophages, neutrophils, eosinophils and lymphocytes) BAL cellularity count; (2) increased number of total, mononuclear and polymorphonuclear cells in the peripheral blood; and (3) no differences in bone marrow cellularity or passive cutaneous anaphylaxis. Significance: In conclusion, female pups treated prenatally with LPS presented an attenuated response to experimentally-induced asthma. We observed reduced immune cell migration from peripheral blood to the lungs, with no effect on the production of bone marrow cells or antibodies. It was suggested that inflammatory events such as exposure to LPS in early fetal life can attenuate allergic inflammation in the lung, which is a common symptom in asthma. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous studies have evidenced for the existence of interactive regulatory mechanisms between insulin and steroid hormones in different systems. In this study, we have investigated whether endogenous corticosteroids could be implicated in the hyporeactivity to antigen challenge observed in sensitized diabetic rats. Alloxinated rats showed a long-lasting increase in the blood glucose levels and a reduction in the number of pleural mast cells at 48 and 72 hr, but not at 24 hr after alloxan administration. In parallel, they also showed a significant elevation in the plasma levels of corticosterone together with an increase in the adrenal/body weight ratio. Antigen-evoked eosinophil accumulation appeared significantly reduced in rats pretreated with dexamethasone as well as in those rendered diabetic 72 hr after alloxan. In the same way, naive animals treated with dexamethasone also responded with a significant decrease in the number of pleural mast cells. Interestingly, when sensitized diabetic rats were pretreated with the steroid antagonist RU 38486 a reversion of the reduction in the allergen-induced eosinophil accumulation was noted. We conclude that the down-regulation of the allergic inflammatory response in diabetic rats is close-related to reduction in mast cell numbers and over expression of endogenous corticosteroids.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Atopic, IgE-mediated allergies are one of the major public health problems in Finland and other Western countries. These diseases are characterized by type 2 T helper (Th2) cell predominated immune responses (interleukin-4 (IL-4), IL-5) against ubiquitous environmental allergens. Despite of adequate pharmacological treatment, more than 20% of the patients with allergic rhinitis develop asthma. Allergen specific immunotherapy (SIT) is the only treatment currently available to affect to the natural course of allergic diseases. This treatment involves repeated administration of allergens to the patients either via sublingual route (sublingual immunotherapy, SLIT) or by subcutaneous injections (subcutaneous immunotherapy, SCIT). Successful treatment with SCIT or SLIT has been shown to provide long-term remission in symptoms, and prevent disease progression to asthma, but the immunological mechanisms behind these beneficial effects are not yet completely understood. Increased knowledge of such mechanisms could not only help to improve SIT efficacy, but also provide tools to monitor the development of clinical response to SIT in individual patients, and possibly also, predict the ultimate therapeutic outcome. The aim of this work was to clarify the immunological mechanisms associated with SIT by investigating the specific allergen-induced immune responses in peripheral blood mononuclear cells (PBMC) of allergic rhinitis patients during the course of SLIT and SCIT. The results of this work demonstrate that both therapies induced increases in the protective, Th2-balancing Th1 type immune responses in PBMC, e.g. by up-regulating signaling lymphocytic activation molecule (SLAM) and interferon gamma (IFN-γ) expression, and augmented tolerogenic T regulatory (Treg) cell type responses against the specific allergens, e.g. by increasing IL-10 or Forkhead box P3 (FOXP3) expression. The induction of allergen-specific Th1 and Treg type responses during SLIT were dependent on the treatment dose, favoring high allergen dose SLIT. During SCIT, the early decrease in Th2 type cytokine production - in particular of IL-4 mRNA and IL-4/IFN-γ expression ratio - was associated with the development of good therapeutic outcome. Conversely, increases in both Th2 (IL-5) and Th1 (IFN-γ, SLAM) type responses and IL-10 mRNA production were seen in the patients with less effective outcome. In addition, increase in Th17 type cytokine (IL-17) mRNA production was found in the PBMC of patients with less effective outcome during both SLIT and SCIT. These data strengthen the current hypothesis that immunomodulation of allergen-specific immune responses from the prevailing Th2-biased responses towards a more Th1 type, and induction of tolerogenic Treg cells producing IL-10 represent the two key mechanisms behind the beneficial effects of SIT. The data also give novel insight into the mechanisms why SIT may fail to be effective in some patients by demonstrating a positive correlation between the proinflammatory IL-17 responses, Th2 type IL-5 production and clinical symptoms. Taken together, these data indicate that the analysis of Th1, Th2, Treg ja Th17-associated immune markers such as IL-10, SLAM, IL-4, IL-5 and IL-17 could provide tools to monitor the development of clinical response to SIT, and thereby, predict the ultimate clinical outcome already in the early course of the treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Airway smooth muscle constriction induced by cholinergic agonists such as methacholine (MCh), which is typically increased in asthmatic patients, is regulated mainly by muscle muscarinic M3 receptors and negatively by vagal muscarinic M2 receptors. Here we evaluated basal (intrinsic) and allergen-induced (extrinsic) airway responses to MCh. We used two mouse lines selected to respond maximally (AIRmax) or minimally (AIRmin) to innate inflammatory stimuli. We found that in basal condition AIRmin mice responded more vigorously to MCh than AIRmax. Treatment with a specific M2 antagonist increased airway response of AIRmax but not of AIRmin mice. The expression of M2 receptors in the lung was significantly lower in AIRmin compared to AIRmax animals. AIRmax mice developed a more intense allergic inflammation than AIRmin, and both allergic mouse lines increased airway responses to MCh. However, gallamine treatment of allergic groups did not affect the responses to MCh. Our results confirm that low or dysfunctional M2 receptor activity is associated with increased airway responsiveness to MCh and that this trait was inherited during the selective breeding of AIRmin mice and was acquired by AIRmax mice during allergic lung inflammation

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Klinische Studien haben gezeigt, dass die allergenspezifische Immuntherapie (SIT) eine effektive Therapieoption für allergische Erkrankungen ist. Obwohl dieses Therapieverfahren seit über 100 Jahren existiert, sind die zugrunde liegenden Suppressionsmechanismen jedoch nicht vollständig verstanden. Bisher wird angenommen, dass der Behandlungserfolg der SIT auf einer Blockade durch allergenspezifische Antikörper, einer Verschiebung des Th1-Th2-Gleichgewichtes und/oder auf einer Suppression durch regulatorische T-Zellen (Tregs) basiert. Um die Effekte der SIT in einer chronischen Erkrankung in vivo untersuchen zu können, wurde in dieser Doktorarbeit ein Mausmodell für chronisches Asthma entwickelt, das die Situation im Menschen nach einer SIT nachahmt. rnDurch eine SIT war es möglich, allergeninduzierte Asthmasymptome wie Atemwegshyperreagibilität (AHR), Eosinophilie in der Lunge, IgE-Produktion und Atemwegsentzündung im Modell zu unterdrücken. Bemerkenswert ist, dass durch OVA-spezifische Immuntherapie (OVA-IT) ebenfalls eine Verringerung der strukturellen Veränderungen im Lungengewebe im chronischen Krankheitsverlauf erreicht wurde.rnDes Weiteren wurde in diesem Modell nach den Prozessen gesucht, die für die toleranzinduzierende Wirkung der SIT verantwortlich sein können. Dabei wurde im Vergleich zur Placebo-behandelten Gruppe eine erhöhte Antwort spezifischer IgG1-Antikörper, eine verstärkte Th1-Antwort, sowie eine erhöhte Frequenz von FoxP3+ Tregs und von IL-10-produzierenden T-Zellen (Tr1-Zellen) nach OVA-IT festge-stellt. Zur weiteren Untersuchung der von SIT-induzierten T-Zellantworten wurden Mausmodelle des allergischen Asthmas mit einem akuten Verlauf gewählt.rnDie Bedeutung der Th1-Zellen für die SIT wurde in T-bet-/- Mäusen untersucht, welche aufgrund des Fehlens des Transkriptionsfaktors T-bet keine stabile Th1-Antwort induzieren können. Durch SIT war es möglich, allergeninduzierte Asthmasymptome wie AHR, eosinophile Granulozyten in der Lunge, IgE-Produktion und Atemwegsentzündung in den T-bet-/- Tieren im gleichen Maße wie in den Wildtyptieren zu unterdrücken. Diese Untersuchung zeigte, dass die SIT auch ohne funktionelle Th1-Zellen die allergische Entzündung unterdrücken kann. rnDie Rolle der Tregs für die SIT wurde in DO11.10 Mäusen und DO11.10 RAG-/- Mäusen untersucht. In beiden Stämmen konnte nach SIT eine Induktion OVA-spezifischer Tregs nachgewiesen werden. In DO11.10 RAG-/- Mäusen können durch den Knockout im rag2-Gen keine natürlichen, d.h. im Thymus gereiften, Tregs entstehen. Im Blut von DO11.10 RAG-/- Mäusen war direkt nach Durchführung der OVA-IT eine FoxP3+ Treg-Population detektierbar. Demnach wird durch die OVA-IT eine de-novo-Induktion von FoxP3+ Tregs in Gang gesetzt. In Abwesenheit der natürlichen Tregs zeigte sich weiterhin, dass diese Zellen zur Produktion von IL-10 in T-Zellen und somit zum Erfolg der SIT beitragen.rnDie Rolle der FoxP3+ Tregs bei der SIT wurde in DEREG Mäusen untersucht. Eine Depletion der FoxP3+ Tregs in DEREG Mäusen während der Durchführung der OVA-IT hob die protektiven Effekte der Therapie jedoch nur teilweise auf. rnUm die Rolle des regulatorischen Zytokins IL-10 bei der SIT zu untersuchen, wurde ein blockierender Antikörper gegen den IL-10-Rezeptor (anti-IL-10R) im chronischen Modell des allergischen Asthmas mit SIT angewendet. Anti-IL-10R hob die protektive Wirkung der SIT auf die AHR, die Atemwegsentzündung und die strukturellen Veränderungen im Lungengewebe auf. Somit ist die protektive Wirkung der SIT abhängig vom IL-10-Signalweg.rnZusammenfassend stellt diese Arbeit die Bedeutung der SIT für allergische Erkrankungen heraus. SIT kann durch die positive Beeinflussung der allergiebedingten, strukturellen Veränderungen in der Lunge auch für Asthmapatienten große Vorteile bringen. Die aus Studien bekannten Mechanismen konnten im Modell bestätigt werden und wurden im weiteren Verlauf untersucht. Die Arbeit stellt im Besonderen die Bedeutung der IL-10-produzierenden und FoxP3+ Tregs für die Effektivität der SIT in den Vordergrund. Zudem ist durch die Etablierung eines neuen Mausmodells der SIT für chronisches allergisches Asthma ein Mittel zur weiteren Erforschung der zugrunde liegenden Prozesse dieser erfolgreichen Therapie geschaffen worden. rn

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: Descending pronociceptive pathways may be implicated in states of persistent pain. Paw skin incision is a well-established postoperative pain model that causes behavioral nociceptive responses and enhanced excitability of spinal dorsal horn neurons. The number of spinal c-Fos positive neurons of rats treated intrathecally with serotonin, noradrenaline or acetylcholine antagonists where evaluated to study the descending pathways activated by a surgical paw incision. Results: The number of c-Fos positive neurons in laminae I/II ipsilateral, lamina V bilateral to the incised paw, and in lamina X significantly increased after the incision. These changes: remained unchanged in phenoxybenzamine-treated rats; were increased in the contralateral lamina V of atropine-treated rats; were inhibited in the ipsilateral lamina I/II by 5-HT(1/2B/2C) (methysergide), 5-HT(2A) (ketanserin) or 5-HT(1/2A/2C/5/6/7) (methiothepin) receptors antagonists, in the ipsilateral lamina V by methysergide or methiothepin, in the contralateral lamina V by all the serotonergic antagonists and in the lamina X by LY 278,584, ketanserin or methiothepin. Conclusions: We conclude: (1) muscarinic cholinergic mechanisms reduce incision-induced response of spinal neurons inputs from the contralateral paw; (2) 5-HT(1/2A/2C/3) receptors-mediate mechanisms increase the activity of descending pathways that facilitates the response of spinal neurons to noxious inputs from the contralateral paw; (3) 5-HT(1/2A/2C) and 5-HT(1/2C) receptors increases the descending facilitation mechanisms induced by incision in the ipsilateral paw; (4) 5-HT(2A/3) receptors contribute to descending pronociceptive pathways conveyed by lamina X spinal neurons; (5) alpha-adrenergic receptors are unlikely to participate in the incision-induced facilitation of the spinal neurons.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Eosinophils, along with mast cells are key cells involved in the innate immune response against parasitic infection whereas the adaptive immune response is largely dependent on lymphocytes. In chronic parasitic disease and in chronic allergic disease, IL-5 is predominantly a T cell derived cytokine which is particularly important for the terminal differentiation, activation and survival of committed eosinophil precursors. The human IL-5 gene is located on chromosome 5 in a gene cluster that contains the evolutionary related IL-4 family of cytokine genes. The human IL-5 receptor complex is a heterodimer consisting of a unique a subunit (predominantly expressed on eosinophils) and a beta subunit which is shared between the receptors for IL-3 & GM-CSF (more widely expressed). The a subunit is required for ligand-specific binding whereas association with the beta subunit results in increased binding affinity. The alternative splicing of the alphaIL-5R gene which contains 14 exons can yield several alphaIL-5R isoforms including a membrane-anchored isoform (alphaIL-5Rm) and a soluble isoform (alphaIL-5Rs). Cytokines such as IL-5 produce specific and non-specific cellular responses through specific cell membrane receptor mediated activation of intracellular signal transduction pathways which, to a large part, regulate gene expression. The major intracellular signal transduction mechanism is activation of non-receptor associated tyrosine kinases including JAK and MAP kinases which can then transduce signals via a novel family of transcriptional factors named signal transducers and activators of transcription (STATS). JAK2, STAT1 and STAT 5 appear to be particularly important in IL-5 mediated eosinophil responses. Asthma is characterized by episodic airways obstruction, increased bronchial responsiveness, and airway inflammation. Several studies have shown an association between the number of activated T cells and eosinophils in the airways and abnormalities in FEV1, airway reactivity and clinical severity in asthma. It has now been well documented that IL-5 is highly expressed in the bronchial mucosa of atopic and intrinsic asthmatics and that the increased IL-5 mRNA present in airway tissues is predominantly T cell derived. Immunocytochemical staining of bronchial biopsy sections has confirmed that IL-5 mRNA transcripts are translated into protein in asthmatic subjects. Furthermore, the number of activated CD 4 + T cells and IL-5 mRNA positive cells are increased in asthmatic airways following antigen challenge and studies that have examined IL-5 expression in asthmatic subjects before and after steroids have shown significantly decreased expression following oral corticosteroid treatment in steroid-sensitive asthma but not in steroid resistant and chronic severe steroid dependent asthma. The link between T cell derived IL-5 and eosinophil activation in asthmatic airways is further strengthened by the demonstration that there is an increased number of alphaIL-5R mRNA positive cells in the bronchial biopsies of atopic and non-atopic asthmatic subjects and that the eosinophil is the predominant site of this increased alphaIL-5R mRNA expression. We have also shown that the subset of activated eosinophils that expressed mRNA for membrane bound alpha IL5r inversely correlated with FEV1, whereas the subset of activated eosinophils that expressed mRNA for soluble alphaIL5r directly correlated with FEV1. Hence, not only does this data suggest that the presence of eosinophils expressing alphaIL-5R mRNA contribute towards the pathogenesis of bronchial asthma, but also that the eosinophil phenotype with respect to alphaIL-5R isoform expression is of central importance. Finally, there are several animal, and more recently in vitro lung explant, models of allergen induced eosinophilia, late airway responses(LARS), and bronchial hyperresponsiveness(BHR) - all of which support a link between IL-5 and airway eosinophila and bronchial hyperresponsiveness. The most direct demonstration of T cell involvement in LARS is the finding that these physiological responses can be transferred by CD4+ but not CD8+ T cells in rats. The importance of IL-5 in animal models of allergen induced bronchial hyperresponsiveness has been further demonstrated by a number of studies which have indicated that IL-5 administration is able to induce late phase responses and BHR and that anti-IL-5 antibody can block allergen induced late phase responses and BHR. In summary, activated T lymphocytes, IL5 production and eosinophil activation are particularly important in the asthmatic response. Human studies in asthma and studies in allergic animal models have clearly emphasised the unique role of IL-5 in linking T lymphocytes and adaptive immunity, the eosinophil effector cell, and the asthma phenotype. The central role of activated lymphocytes and eosinophils in asthma would argue for the likely therapeutic success of strategies to block T cell and eosinophil activation (eg steroids). Importantly, more targeted therapies may avoid the complications associated with steroids. Such therapies could target key T cell activation proteins and cytokines by various means including blocking antibodies (eg anti-CD4, anti-CD40, anti-IL-5 etc), antisense oligonucleotides to their specific mRNAs, and/or selective inhibition of the promoter sites for these genes. Another option would be to target key eosinophil activation mechanisms including the aIL5r. As always, the risk to benefit ratio of such strategies await the results of well conducted clinical trials.