999 resultados para Allee effect
Resumo:
A recent study by Korolev et al. [Nat. Rev. Cancer, 14:371–379, 2014] evidences that the Allee effect—in its strong form, the requirement of a minimum density for cell growth—is important in the spreading of cancerous tumours. We present one of the first mathematical models of tumour invasion that incorporates the Allee effect. Based on analysis of the existence of travelling wave solutions to this model, we argue that it is an improvement on previous models of its kind. We show that, with the strong Allee effect, the model admits biologically relevant travelling wave solutions, with well-defined edges. Furthermore, we uncover an experimentally observed biphasic relationship between the invasion speed of the tumour and the background extracellular matrix density.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The main purpose of this work was to study population dynamic discrete models in which the growth of the population is described by generalized von Bertalanffy's functions, with an adjustment or correction factor of polynomial type. The consideration of this correction factor is made with the aim to introduce the Allee effect. To the class of generalized von Bertalanffy's functions is identified and characterized subclasses of strong and weak Allee's functions and functions with no Allee effect. This classification is founded on the concepts of strong and weak Allee's effects to population growth rates associated. A complete description of the dynamic behavior is given, where we provide necessary conditions for the occurrence of unconditional and essential extinction types. The bifurcation structures of the parameter plane are analyzed regarding the evolution of the Allee limit with the aim to understand how the transition from strong Allee effect to no Allee effect, passing through the weak Allee effect, is realized. To generalized von Bertalanffy's functions with strong and weak Allee effects is identified an Allee's effect region, to which is associated the concepts of chaotic semistability curve and Allee's bifurcation point. We verified that under some sufficient conditions, generalized von Bertalanffy's functions have a particular bifurcation structure: the big bang bifurcations of the so-called box-within-a-box type. To this family of maps, the Allee bifurcation points and the big bang bifurcation points are characterized by the symmetric of Allee's limit and by a null intrinsic growth rate. The present paper is also a significant contribution in the framework of the big bang bifurcation analysis for continuous 1D maps and unveil their relationship with the explosion birth and the extinction phenomena.
Resumo:
Limited dispersal may favor the evolution of helping behaviors between relatives as it increases their relatedness, and it may inhibit such evolution as it increases local competition between these relatives. Here, we explore one way out of this dilemma: if the helping behavior allows groups to expand in size, then the kin-competition pressure opposing its evolution can be greatly reduced. We explore the effects of two kinds of stochasticity allowing for such deme expansion. First, we study the evolution of helping under environmental stochasticity that may induce complete patch extinction. Helping evolves if it results in a decrease in the probability of extinction or if it enhances the rate of patch recolonization through propagules formed by fission of nonextinct groups. This mode of dispersal is indeed commonly found in social species. Second, we consider the evolution of helping in the presence of demographic stochasticity. When fecundity is below its value maximizing deme size (undersaturation), helping evolves, but under stringent conditions unless positive density dependence (Allee effect) interferes with demographic stochasticity. When fecundity is above its value maximizing deme size (oversaturation), helping may also evolve, but only if it reduces negative density-dependent competition.
Resumo:
Six large-bodied, ≥ 120 g, woodpecker species are listed as near-threatened to critically endangered by the International Union for Conservation of Nature (IUCN). The small population paradigm assumes that these populations are likely to become extinct without an increase in numbers, but the combined influences of initial population size and demographic rates, i.e., annual adult survival and fecundity, may drive population persistence for these species. We applied a stochastic, stage-based single-population model to available demographic rates for Dryocopus and Campephilus woodpeckers. In particular, we determined the change in predicted extinction rate, i.e., proportion of simulated populations that went extinct within 100 yr, to concomitant changes in six input parameters. To our knowledge, this is the first study to evaluate the combined importance of initial population size and demographic rates for the persistence of large-bodied woodpeckers. Under a worse-case scenario, the median time to extinction was 7 yr (range: 1–32). Across the combinations of other input values, increasing initial population size by one female induced, on average, 0.4%–3.2% (range: 0%–28%) reduction in extinction rate. Increasing initial population size from 5–30 resulted in extinction rates < 0.05 under limited conditions: (1) all input values were intermediate, or (2) Allee effect present and annual adult survival ≥ 0.8. Based on our model, these species can persist as rare, as few as five females, and thus difficult-to-detect, populations provided they maintain ≥ 1.1 recruited females annually per adult female and an annual adult survival rate ≥ 0.8. Athough a demographic-based population viability analysis (PVA) is useful to predict how extinction rate changes across scenarios for life-history attributes, the next step for modeling these populations should incorporate more easily acquired data on changes in patch occupancy to make predictions about patch colonization and extinction rates.
Resumo:
1. To understand population dynamics in stressed environments it is necessary to join together two classical lines of research. Population responses to environmental stress have been studied at low density in life table response experiments. These show how the population's growth rate (pgr) at low density varies in relation to levels of stress. Population responses to density, on the other hand, are based on examination of the relationship between pgr and population density. 2. The joint effects of stress and density on pgr can be pictured as a contour map in which pgr varies with stress and density in the same way that the height of land above sea level varies with latitude and longitude. Here a microcosm experiment is reported that compared the joint effects of zinc and population density on the pgr of the springtail Folsomia candida (Collembola). 3. Our experiments allowed the plotting of a complete map of the effects of density and a stressor on pgr. Particularly important was the position of the pgr= 0 contour, which suggested that carrying capacity varied little with zinc concentration until toxic levels were reached. 4. This prediction accords well with observations of population abundance in the field. The method also allowed us to demonstrate, simultaneously, hormesis, toxicity, an Allee effect and density dependence. 5. The mechanisms responsible for these phenomena are discussed. As zinc is an essential trace element the initial increase in pgr is probably a consequence of dietary zinc deficiency. The Allee effect may be attributed to productivity of the environment increasing with density at low density. Density dependence is a result of food limitation. 6. Synthesis and applications. We illustrate a novel solution based on mapping a population's growth rate in relation to stress and population density. Our method allows us to demonstrate, simultaneously, hormesis, toxicity, an Allee effect and density dependence in an important ecological indicator species. We hope that the approach followed here will prove to have general applicability enabling predictions of field abundance to be made from estimates of the joint effects of the stressors and density on population growth rate.
Resumo:
This work is divided in two parts. In the first part we develop the theory of discrete nonautonomous dynamical systems. In particular, we investigate skew-product dynamical system, periodicity, stability, center manifold, and bifurcation. In the second part we present some concrete models that are used in ecology/biology and economics. In addition to developing the mathematical theory of these models, we use simulations to construct graphs that illustrate and describe the dynamics of the models. One of the main contributions of this dissertation is the study of the stability of some concrete nonlinear maps using the center manifold theory. Moreover, the second contribution is the study of bifurcation, and in particular the construction of bifurcation diagrams in the parameter space of the autonomous Ricker competition model. Since the dynamics of the Ricker competition model is similar to the logistic competition model, we believe that there exists a certain class of two-dimensional maps with which we can generalize our results. Finally, using the Brouwer’s fixed point theorem and the construction of a compact invariant and convex subset of the space, we present a proof of the existence of a positive periodic solution of the nonautonomous Ricker competition model.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We construct exact solutions for a system of two coupled nonlinear partial differential equations describing the spatio-temporal dynamics of a predator-prey system where the prey per capita growth rate is subject to the Allee effect. Using the G'/G expansion method, we derive exact solutions to this model for two different wave speeds. For each wave velocity we report three different forms of solutions. We also discuss the biological relevance of the solutions obtained. © 2012 Elsevier B.V.
Resumo:
It is a tenet of ecological theory that two competing consumers cannot stably coexist on a single limiting resource in a homogeneous environment. Many mechanisms and processes have since been evoked and studied, empirically and theoretically, to explain species coexistence and the observed biological diversity. Facilitative interactions clearly have the potential to enhance coexistence. Yet, even though mutual facilitation between species of the same guild is widely documented empirically, the subject has received very little theoretical attention. Here, we study one form of intraguild mutualism in the simplest possibly community module of one resource and two consumers. We incorporate mutualism as enhanced consumption in the presence of the other consumers. We find that intraguild mutualism can (a) significantly enhance coexistence of consumers, (b) induce cyclic dynamics, and (c) give rise to a bi-stability (a 'joint' Allee effect) and potentially catastrophic collapse of both consumer species. © 2012 Elsevier B.V.
Resumo:
Most previous attempts at reconstructing the past history of human populations did not explicitly take geography into account, or considered very simple scenarios of migration and ignored environmental information. However, it is likely that the Last Glacial Maximum (LGM) affected the demography and the range of many species, including our own. Moreover, long-distance dispersal (LDD) may have been an important component of human migrations, allowing fast colonization of new territories and preserving high levels of genetic diversity. Here, we use a high-quality microsatellite dataset genotyped in 22 populations to estimate the posterior probabilities of several scenarios for the settlement of the Old World by modern humans. We considered models ranging from a simple spatial expansion to others including LDD and a LGM-induced range contraction, as well as Neolithic demographic expansions. We find that scenarios with LDD are much better supported by data than models without LDD. Nevertheless, we show evidence that LDD events to empty habitats were strongly prevented during the settlement of Eurasia. This unexpected absence of LDD ahead of the colonization wave front could have been caused by an Allee effect, either due to intrinsic causes such as an inbreeding depression built during the expansion, or to extrinsic causes such as direct competition with archaic humans. Overall, our results suggest only a relatively limited effect of the LGM-contraction on current patterns of human diversity. This is in clear contrast with the major role of LDD migrations, which have potentially contributed to the intermingled genetic structure of Eurasian populations.
Resumo:
Sex change, or sequential hermaphroditism, occurs in the plant and animal kingdoms and often determines a predominance of the first sex. Our aim was to explore changes in sex ratios within the range of the species studied: Patella vulgata and Patella depressa. The broad-scale survey of sex with size of limpets covered a range of latitudes from Zambujeira do Mar (southern Portugal) to the English Channel. Indirect evidence was found for the occurrence of protandry in P. vulgata populations from the south of England, with females predominating in larger size-classes; cumulative frequency distributions of males and females were different; sex ratios were biased towards males and smallest sizes of males were smaller than the smallest sizes of females. In contrast in Portugal females were found in most size-classes of P. vulgata. In P. depressa populations from the south coast of England and Portugal females were interspersed across most size-classes; size distributions of males and females and size at first maturity of males and females did not differ. P. depressa did, however, show some indications of the possibility of slight protandry occurring in Portugal. The test of sex ratio variation with latitude indicated that P. vulgata sex ratios might be involved in determining the species range limit, particularly at the equatorward limit since the likelihood of being male decreased from the south coast of England to southern Portugal. Thus at the southern range limit, sperm could be in short supply due to scarcity of males contributing to an Allee effect.
Resumo:
Sex change, or sequential hermaphroditism, occurs in the plant and animal kingdoms and often determines a predominance of the first sex. Our aim was to explore changes in sex ratios within the range of the species studied: Patella vulgata and Patella depressa. The broad-scale survey of sex with size of limpets covered a range of latitudes from Zambujeira do Mar (southern Portugal) to the English Channel. Indirect evidence was found for the occurrence of protandry in P. vulgata populations from the south of England, with females predominating in larger size-classes; cumulative frequency distributions of males and females were different; sex ratios were biased towards males and smallest sizes of males were smaller than the smallest sizes of females. In contrast in Portugal females were found in most size-classes of P. vulgata. In P. depressa populations from the south coast of England and Portugal females were interspersed across most size-classes; size distributions of males and females and size at first maturity of males and females did not differ. P. depressa did, however, show some indications of the possibility of slight protandry occurring in Portugal. The test of sex ratio variation with latitude indicated that P. vulgata sex ratios might be involved in determining the species range limit, particularly at the equatorward limit since the likelihood of being male decreased from the south coast of England to southern Portugal. Thus at the southern range limit, sperm could be in short supply due to scarcity of males contributing to an Allee effect.
Resumo:
Benthic marine invertebrates may form metapopulations connected via propagule dispersal. Conservation efforts often target potential source coastlines to indirectly benefit areas depending on allochthonous offspring production. Besides population density, adult size structure, sex ratio, brooding frequency and the proportion of breeding individuals may significantly influence the reproductive output of benthic populations, but these effects have seldom been tested. We used rocky shore crabs to assess the spatial variability of such parameters at relevant scales for conservation purposes and to test their consistency over 2 consecutive years; we then used the data to address whether bottom-up processes or biological interactions might explain the patterns observed. We decomposed egg production rates into their components for the 2 most abundant brachyuran species inhabiting the intertidal rocky habitat. Adult density and brooding frequency varied consistently among shores for both species and largely explained the overall spatial trends of egg production. Temporally consistent patterns also included among-shore differences in the size of ovigerous females of the grapsid Pachygrapsus transversus and between-bay differences in the fecundity of the spider crab Epialtus brasiliensis. Sex ratio was remarkably constant in both. We found no positive or negative correlations between adult density and brooding frequency to support either the existence of a component Allee effect (lack of mate encounters) or an effect of intra-specific competition. Likewise, shore-specific potential growth in P. transversus does not negatively correlate with frequency of ovigerous individuals, as would be expected under a critical balance between these 2 processes. The patterns observed suggest that bottom-up drivers may best explain spatial trends in the reproductive output of these species.