846 resultados para All-optical logic gates


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The optical bistability occurring in laser diode amplifiers is used to design an all-optical logic gate capable to provide the whole set of logic functions. The structure of the reported logic gate is based on two connected 1550nm laser amplifiers (Fabry-Perot and distributed feedback laser amplifiers).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

All-optical solutions for switching and routing packet-based traffic are crucial for realizing a truly transparent network. To meet the increasing requirements for higher bandwidth, such optical packet switched networks may require the implementation of digital functions in the physical layer. This scenario stimulated us to research and develop innovative high-speed all-optical storage memories, focusing mainly on bistables whose state switching is triggered by a pulsed clock signal. In clocked devices, a synchronization signal is responsible for controlling the enabling of the bistable. This thesis also presents novel solutions to implement optical logic gates, which are basic building blocks of any processing system and a fundamental element for the development of complex processing functionalities. Most of the proposed schemes developed in this work are based on SOA-MZI structures due to their inherent characteristics such as, high extinction ratio, high operation speed, high integration capability and compactness. We addressed the experimental implementation of an all-optical packet routing scheme, with contention resolution capability, using interconnected SOAMZIs. The impact on the system performance of the reminiscent power of the blocked packets, from the non ideal switching performed by the SOA-MZIs, was also assessed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A sensitive method based on the principle of photothermal phenomena to realize optical logic gates is presented. A dual beam thermal lens method using low power cw lasers in a dye-doped polymer can be very effectively used as an alternate technique to perform the logical function such as NAND, AND and OR.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A chaotic output was obtained previously by us, from an Optical Programmable Logic Cell when a feedback is added. Some time delay is given to the feedback in order to obtain the non-linear behavior. The working conditions of such a cell is obtained from a simple diagram with fractal properties. We analyze its properties as well as the influence of time delay on the characteristics of the working diagram. A further study of the chaotic obtained signal is presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a logical design of an all-optical processor that performs modular arithmetic. The overall design is based a set of interconnected modules that use all-optical gates to perform simple logical functions. The all-optical logic gates are based on the semiconductor optical amplifier nonlinear loop. Simulation results are presented and some practical design issues are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The competition between Photoinduced electron transfer (PET) and other de-excitation pathways such as fluorescence and phosphorescence can be controlled within designed molecular structures. Depending on the particular design, the resulting optical output is thus a function of various inputs such as ion concentration and excitation light dose. Once digitized into binary code, these input-output patterns can be interpreted according to Boolean logic. The single-input logic types of YES and NOT cover simple sensors and the double- (or higher-) input logic types represent other gates such as AND and OR. The logic-based arithmetic processors such as half-adders and half-subtractors are also featured. Naturally, a principal application of the more complex gates is in multi-sensing contexts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AND logic gate behaviour can be recognized in chemical-responsive luminescence phenomena concerning small molecules. Though initial developments concerned separate and distinguishable chemical species as inputs, consideration of other types of input sets allows substantial expansion of the sub-field. Dissection of these molecular devices into modules, where possible, enables analysis of their logic behaviour according to supramolecular photochemical mechanisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We experimentally demonstrate an all-optical binary counter composed of four semiconductor optical amplifier based all-optical switching gates. The time-of-flight optical circuit operates with bit-differential delays between the exclusive-OR gate used for modulo-2 binary addition and the AND gate used for binary carry detection. A movie of the counter operating in real time is presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study of the Vertical-Cavity Semiconductor Optical Amplifiers (VCSOAs) for optical signal processing applications is increasing his interest. Due to their particular structure, the VCSOAs present some advantages when compared to their edge-emitting counterparts including low manufacturing costs, high coupling efficiency to optical fibers and the ease to fabricate 2-D arrays of this kind of devices. As a consequence, all-optical logic gates based on VCSOAs may be very promising devices for their use in optical computing and optical switching in communications. Moreover, since all the boolean logic functions can be implemented by combining NAND logic gates, the development of a Vertical-Cavity NAND gate would be of particular interest. In this paper, the characteristics of the dispersive optical bistability appearing on a VCSOA operated in reflection are studied. A progressive increment of the number of layers compounding the top Distributed Bragg Reflector (DBR) of the VCSOA results on a change on the shape of the appearing bistability from an S-shape to a clockwise bistable loop. This resulting clockwise bistability has high on-off contrast ratio and input power requirements one order of magnitude lower than those needed for edge-emitting devices. Based on these results, an all-optical vertical-cavity NAND gate with high on-off contrast ratio and an input power for operation of only 10|i\V will be reported in this paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new improved design of an all-optical processor that performs modular arithmetic is presented. The modulo-processor is based on all-optical circuit of interconnected semiconductor optical amplifier logic gates. The design allows processing times of less than 1 µs for 16-bit operation at 10 Gb/s and up to 32-bit operation at 100 Gb/s.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present, for the first time to our knowledge, a generalized lookahead logic algorithm for number conversion from signed-digit to complement representation. By properly encoding the signed-digits, all the operations are performed by binary logic, and unified logical expressions can be obtained for conversion from modified-signed-digit (MSD) to 2's complement, trinary signed-digit (TSD) to 3's complement, and quarternary signed-digit (QSD) to 4's complement. For optical implementation, a parallel logical array module using an electron-trapping device is employed and experimental results are shown. This optical module is suitable for implementing complex logic functions in the form of the sum of the product. The algorithm and architecture are compatible with a general-purpose optoelectronic computing system. (C) 2001 Society of Photo-Optical Instrumentation Engineers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes novel universal logic gates using the current quantization characteristics of nanodevices. In nanodevices like the electron waveguide (EW) and single-electron (SE) turnstile, the channel current is a staircase quantized function of its control voltage. We use this unique characteristic to compactly realize Boolean functions. First we present the concept of the periodic-threshold threshold logic gate (PTTG), and we build a compact PTTG using EW and SE turnstiles. We show that an arbitrary three-input Boolean function can be realized with a single PTTG, and an arbitrary four-input Boolean function can be realized by using two PTTGs. We then use one PTTG to build a universal programmable two-input logic gate which can be used to realize all two-input Boolean functions. We also build a programmable three-input logic gate by using one PTTG. Compared with linear threshold logic gates, with the PTTG one can build digital circuits more compactly. The proposed PTTGs are promising for future smart nanoscale digital system use.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Advanced modulation formats have become increasingly important as telecoms engineers strive for improved tolerance to both linear and nonlinear fibre-based transmission impairments. Two important modulation schemes are Duobinary (DB) and Alternate-mark inversion (AMI) [1] where transmission enhancement results from auxiliary phase modulation. As advanced modulation formats displace Return-to-zero On-Off Keying (RZ-OOK), inter-modulation converters will become increasingly important. If the modulation conversion can be performed at high bitrates with a small number of operations per bit, then all-optical techniques may offer lower energy consumption compared to optical-electronic-optical approaches. In this paper we experimentally demonstrate an all-optical system incorporating a pair of hybrid-integrated semiconductor optical amplifier (SOA)-based Mach-Zehnder interferometer (MZI) gates which translate RZ-OOK to RZ-DB or RZ-AMI at 42.6 Gbps. This scheme includes a wavelength conversion to arbitrary output wavelength and has potential for high-level photonic integration, scalability to higher bitrates, and should exhibit regenerative properties [2].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The synthesis and photophysical characterization of a novel molecular logic gate 4, operating in water, is demonstrated based on the competition between. fluorescence and photoinduced electron transfer (PET). It is constructed according to a 'fluorophore-spacer-receptor(1)-spacer-receptor(2)' format where anthracene is the. fluorophore, receptor(1) is a tertiary amine and receptor(2) is a phenyliminodiacetate ligand. Using only protons and zinc cations as the chemical inputs and. fluorescence as the output, 4 is demonstrated to be both a two-input AND and INH logic gate. When 4 is examined in context to the YES logic gates 1 and 2, and the two-input AND logic gate 3 and three-input AND logic gate 5, each with one or more of the following receptors including a tertiary amine, phenyliminodiacetate or benzo-15-crown-5 ether, logic gate 4 is the missing link in the homologous series. Collectively, the molecular logic gates 1-5 corroborate the PET 'fluorophore-spacer-receptor' model using chemical inputs and a light-signal output and provide insight into controlling the. fluorescence quantum yield of future PET-based molecular logic gates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structural and functional information encoded in DNA combined with unique properties of nanomaterials could be of use for the construction of novel biocomputational circuits and intelligent biomedical nanodevices. However, at present their practical applications are still limited by either low reproducibility of fabrication, modest sensitivity, or complicated handling procedures. Here, we demonstrate the construction of label-free and switchable molecular logic gates that use specific conformation modulation of a guanine- and thymine- rich DNA, while the optical readout is enabled by the tunable alphabetical metamaterials, which serve as a substrate for surface enhanced Raman spectroscopy (MetaSERS). By computational and experimental investigations, we present a comprehensive solution to tailor the plasmonic responses of MetaSERS with respect to the metamaterial geometry, excitation energy, and polarization. Our tunable MetaSERS-based DNA logic is simple to operate, highly reproducible, and can be stimulated by ultra-low concentration of the external inputs, enabling an extremely sensitive detection of mercury ions.