988 resultados para Aliphatic hydrocarbons. Bottom sediments. Potengi River estuary, Natal - RN
Resumo:
The Potengi river estuary is located in the region of Natal (RN, Brazil), comprising a population of approximately 1,000,000 inhabitants. Besides the dominant urban presence, the estuary has fragments of mangrove forest. The objective of this study is to determine the aliphatic hydrocarbons found in the bottom sediments of this estuary, identifying their levels, distribution and their possible origins through the diagnostic rates, indexes and results comparisons with the local anthropic and natural characteristics. The samples were obtained according to a plan that allowed sampling of the estuary up to 12 km upstream from it as mounth. 36 stations were selected, grouped into 12 cross sections through the course of the river and spaced on average by 1 km. Each section consisted of three stations: the right margin, the deepest point and the left margin. The hydrocarbon n-alkanes from C10 to C36, the isoprenoids pristane and phytane, the unresolved complex mixture (UCM) and the total resolved hydrocarbons were analyzed by gas chromatography. N-alkanes, pristane, phytane and UCM were detected only at some stations. In the other, the concentration was below the detection limit defined by the analytical method (0.1 mg / kg), preventing them from being analyzed to determine the origin of the material found. By using different parameters, the results show that the estuary receives both the input of petrogenic hydrocarbons, but also of biogenic hydrocarbons, featuring a mixture of sources and relatively impacted portions. Based on the characteristics and activities found in the region, it is possible to affirm that petrogenic sources related to oil products enter the estuary via urban runoff or boats traffic, boat washing and fueling. Turning to the biogenic source, the predominant origin was terrestrial, characterized by vascular plants, indicating contribution of mangrove vegetation. It was evident the presence of, at specific points in the estuary, hydrocarbon pollution, and, therefore is recommended the adoption of actions aimed at interrupting or, at least, mitigating the sources potentially capable of damp petrogenic hydrocarbons in the estuary studied.
Resumo:
The Potengi river estuary is located in the region of Natal (RN, Brazil), comprising a population of approximately 1,000,000 inhabitants. Besides the dominant urban presence, the estuary has fragments of mangrove forest. The objective of this study is to determine the aliphatic hydrocarbons found in the bottom sediments of this estuary, identifying their levels, distribution and their possible origins through the diagnostic rates, indexes and results comparisons with the local anthropic and natural characteristics. The samples were obtained according to a plan that allowed sampling of the estuary up to 12 km upstream from it as mounth. 36 stations were selected, grouped into 12 cross sections through the course of the river and spaced on average by 1 km. Each section consisted of three stations: the right margin, the deepest point and the left margin. The hydrocarbon n-alkanes from C10 to C36, the isoprenoids pristane and phytane, the unresolved complex mixture (UCM) and the total resolved hydrocarbons were analyzed by gas chromatography. N-alkanes, pristane, phytane and UCM were detected only at some stations. In the other, the concentration was below the detection limit defined by the analytical method (0.1 mg / kg), preventing them from being analyzed to determine the origin of the material found. By using different parameters, the results show that the estuary receives both the input of petrogenic hydrocarbons, but also of biogenic hydrocarbons, featuring a mixture of sources and relatively impacted portions. Based on the characteristics and activities found in the region, it is possible to affirm that petrogenic sources related to oil products enter the estuary via urban runoff or boats traffic, boat washing and fueling. Turning to the biogenic source, the predominant origin was terrestrial, characterized by vascular plants, indicating contribution of mangrove vegetation. It was evident the presence of, at specific points in the estuary, hydrocarbon pollution, and, therefore is recommended the adoption of actions aimed at interrupting or, at least, mitigating the sources potentially capable of damp petrogenic hydrocarbons in the estuary studied.
Resumo:
Environmental issues are becoming increasingly habitual to the media, particularly when calamities are involved. A feature of environmental disasters is that they disclose both environmental crises and the media limitation in reporting them. The research tried to contribute to the subject through the study of press media coverage of a large fish kill along an estuary in the State of Rio Grande do Norte, Brazil, in 2007. Thematic content analysis of newspaper reports identified the predominance of a superficial and denunciative coverage, lacking an educational perspective, and with little contribution to formation of a critical sense in readers. It also has identified the precarious treatment of those scientific concepts that could substantiate the actual causes of mortality of tons of aquatic fauna
Resumo:
Estuaries are environments prone to the input of chemical pollutants of various kinds and origins, including polycyclic aromatic hydrocarbons (PAHs). Anthropogenic PAHs may have two possible sources: pyrolytic (with four or more aromatic rings and low degree of alkylation) and petrogenic (with two and three aromatic rings and high degree of alkylation). This study aimed to evaluate the levels, distribution and possible sources of polycyclic aromatic hydrocarbons in the estuary of the Potengi river, Natal, Brazil. Samples of bottom sediments were collected in the final 12 km of the estuary until its mouth to the sea, where the urbanization of the Great Natal is more concentrated. Sampling was performed on 12 cross sections, with three stations each, totaling 36 samples, identified as T1 to T36. The non alkylated and alkylated PAHs were analyzed by gas chromatography coupled to mass spectrometry (GC / MS). PAHs were detected in all 36 stations with total concentration on each varying 174-109407 ng g-1. These values are comparable to those of several estuarine regions worldwide with high anthropogenic influence, suggesting the record of diffuse contamination installed in the estuary. PAHs profiles were similar for most stations. In 32 of the 36 stations, low molecular weight PAHs (with 2 and 3 ring: naphthalene, phenanthrene and their alkylated homologues) prevailed, which ranged from 54% to 100% of the total PAH, indicating that leaks, spills and combustion fuels are the dominant source of PAH pollution in the estuary. The level of contamination by PAHs in most stations suggests that there is potential risk of occasional adverse biological effects, but in some stations adverse impacts on the biota may occur frequently. The diagnostic ratios could differentiate sources of PAHs in sediments of the estuary, which were divided into three groups: petrogenic, pyrolytic and mixing of sources. The urban concentration of the Great Natal and the various industrial activities associated with it can be blamed as potential sources of PAHs in bottom sediments of the estuary studied. The data presented highlight the need to control the causes of existing pollution in the estuary
Resumo:
Estuaries are environments prone to the input of chemical pollutants of various kinds and origins, including polycyclic aromatic hydrocarbons (PAHs). Anthropogenic PAHs may have two possible sources: pyrolytic (with four or more aromatic rings and low degree of alkylation) and petrogenic (with two and three aromatic rings and high degree of alkylation). This study aimed to evaluate the levels, distribution and possible sources of polycyclic aromatic hydrocarbons in the estuary of the Potengi river, Natal, Brazil. Samples of bottom sediments were collected in the final 12 km of the estuary until its mouth to the sea, where the urbanization of the Great Natal is more concentrated. Sampling was performed on 12 cross sections, with three stations each, totaling 36 samples, identified as T1 to T36. The non alkylated and alkylated PAHs were analyzed by gas chromatography coupled to mass spectrometry (GC / MS). PAHs were detected in all 36 stations with total concentration on each varying 174-109407 ng g-1. These values are comparable to those of several estuarine regions worldwide with high anthropogenic influence, suggesting the record of diffuse contamination installed in the estuary. PAHs profiles were similar for most stations. In 32 of the 36 stations, low molecular weight PAHs (with 2 and 3 ring: naphthalene, phenanthrene and their alkylated homologues) prevailed, which ranged from 54% to 100% of the total PAH, indicating that leaks, spills and combustion fuels are the dominant source of PAH pollution in the estuary. The level of contamination by PAHs in most stations suggests that there is potential risk of occasional adverse biological effects, but in some stations adverse impacts on the biota may occur frequently. The diagnostic ratios could differentiate sources of PAHs in sediments of the estuary, which were divided into three groups: petrogenic, pyrolytic and mixing of sources. The urban concentration of the Great Natal and the various industrial activities associated with it can be blamed as potential sources of PAHs in bottom sediments of the estuary studied. The data presented highlight the need to control the causes of existing pollution in the estuary
Resumo:
Organic carbon (OC) in definitely small area sediments(according to marine dimension)off the Huanghe River Estuary is investigated in order to evaluate the feature of regional difference of physical and chemical properties in marginal sea sediments. The distributions of OC in sediments with natural grain size and the relationship with the pH, Eh,Es and Fe3+/Fe2+ are discussed. In addition,OC decomposition rates in surfacial/subsurfacial sediments are estimated. OC concentrations range from 0.26% to 1.8%(wt)in the study area. Significant differences in OC content and in horizontal distribution as well as various trends in surfacial/subsurfacial sediments exhibit the feature of regional difference remarkably in marginal sea sediments. The complicated distribution of OC in surface sediments is due to the influence of bacterial activity and abundance, bioturbation of benthos and physical disturbance. The OC decomposition rate constant in surfacial/subsurfacial sediments ranges from 0.0097 to 0.076 a(-1) and the relatively high values may be mainly related to bacteria that are mainly responsible for OC mineralization;meio-and macrofauna affect OC degradation both directly, through feeding on it, and indirectly through bioturbation and at the same time coarse sediments are also disadvantageous to OC preservation. In almost all the middle and bottom sediments the contents of OC decrease with the increase of deposition depth, which indicates that mineralization of OC in the middle and bottom sediments has occurred via processes like SO42- reduction and Fe-oxide reduction.
Resumo:
In 1995-1997 three oceanographic cruises to the White Sea were undertaken in the framework of the INTAS project 94-391, and a multi-disciplinary geochemical study of the major North Dvina estuary has been carried out. Distribution of temperature, salinity and concentration of suspended matter in water columm, as well as contents of Al, Fe, Mn, Co, Cu, Ni, Cr, Pb, Zn, and organic carbon contents in suspended matter and sediments of the North Dvina estuary were determined. Most of the metals and organic matter studied appear to be of terrestrial origin, since the main source of investigated elements in the estuary is river run-off. It was found that metals incorporated in minerals are absolutely prevailing forms in estuarine sediments, they comprise up to 60-99% of total metal contents. Two zones of metal accumulation in the sediments were found in the North Dvina estuary. These zones are considered as local geochemical barriers within a major river-sea barrier. Distribution of most elements studied in the sediments of the North Dvina estuary is controlled by grain size variability in the sediments. Analysis of data on heavy metal contents in the sediments and bivalves of the North Dvina estuary did not reveal any anthropogenic heavy metal pollution in the region.
Resumo:
According to data from Cruise 54 of R/V Akademik Mstislav Keldysh (September 2007) results of geochemical studies of redox processes in bottom sediments from the Ob River mouth area as applied to redox indicator elements (such as manganese, iron, and sulfur) are presented. Parameters of bottom sediments and distribution of these elements evidence not only a significant role of mixing processes at an geochemical profile of bottom sediments in the estuary but also a role of postsedimentation (diagenetic) processes.
Resumo:
The results of studying hydrocarbons during the flood in May 2005 are discussed. The concentration of aliphatic and polycyclic aromatic hydrocarbons are shown to match their concentrations in water areas with steady input of pollutants. Weathered oil and pyrogenic compounds dominated in their composition. The geochemical barrier the Northern Dvina River-Dvina Gulf is shown to become a filter during floods and prevents pollutants from penetrating into the White Sea.
Resumo:
Data are presented on concentrations of aliphatic and polycyclic aromatic hydrocarbons (AHC and PAH) in interstitial waters and bottom sediments of the Kara Sea compared to distribution of particulate matter and organic carbon. It was found that AHC concentrations within the water mass (aver. 16 µg/l) are mainly formed by natural processes. Distribution of AHC represents variability of hydrological and sedimentation processes in different regions of the sea. The widest ranges of the concentrations occurred in the Obskaya Guba - Kara Sea section: in water (10-310 µg/l for AHC and 0.4-7.2 ng/l for PAH) and in the surface layer of the bottom sediments (8-42 µg/l for AHC and 9-94 ng/g for PAH). Differentiation of hydrocarbons (HC) in different media follows regularities typical for marginal filters; therefore no oil and pyrogenic compounds are supplied to the open sea. In sediments contents of HC depend on variations in redox conditions in sediments and on their composition.