894 resultados para Algoritmos de minimização


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Matemática - IBILCE

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The predictive control technique has gotten, on the last years, greater number of adepts in reason of the easiness of adjustment of its parameters, of the exceeding of its concepts for multi-input/multi-output (MIMO) systems, of nonlinear models of processes could be linearised around a operating point, so can clearly be used in the controller, and mainly, as being the only methodology that can take into consideration, during the project of the controller, the limitations of the control signals and output of the process. The time varying weighting generalized predictive control (TGPC), studied in this work, is one more an alternative to the several existing predictive controls, characterizing itself as an modification of the generalized predictive control (GPC), where it is used a reference model, calculated in accordance with parameters of project previously established by the designer, and the application of a new function criterion, that when minimized offers the best parameters to the controller. It is used technique of the genetic algorithms to minimize of the function criterion proposed and searches to demonstrate the robustness of the TGPC through the application of performance, stability and robustness criterions. To compare achieves results of the TGPC controller, the GCP and proportional, integral and derivative (PID) controllers are used, where whole the techniques applied to stable, unstable and of non-minimum phase plants. The simulated examples become fulfilled with the use of MATLAB tool. It is verified that, the alterations implemented in TGPC, allow the evidence of the efficiency of this algorithm

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A modelagem de processos industriais tem auxiliado na produção e minimização de custos, permitindo a previsão dos comportamentos futuros do sistema, supervisão de processos e projeto de controladores. Ao observar os benefícios proporcionados pela modelagem, objetiva-se primeiramente, nesta dissertação, apresentar uma metodologia de identificação de modelos não-lineares com estrutura NARX, a partir da implementação de algoritmos combinados de detecção de estrutura e estimação de parâmetros. Inicialmente, será ressaltada a importância da identificação de sistemas na otimização de processos industriais, especificamente a escolha do modelo para representar adequadamente as dinâmicas do sistema. Em seguida, será apresentada uma breve revisão das etapas que compõem a identificação de sistemas. Na sequência, serão apresentados os métodos fundamentais para detecção de estrutura (Modificado Gram- Schmidt) e estimação de parâmetros (Método dos Mínimos Quadrados e Método dos Mínimos Quadrados Estendido) de modelos. No trabalho será também realizada, através dos algoritmos implementados, a identificação de dois processos industriais distintos representados por uma planta de nível didática, que possibilita o controle de nível e vazão, e uma planta de processamento primário de petróleo simulada, que tem como objetivo representar um tratamento primário do petróleo que ocorre em plataformas petrolíferas. A dissertação é finalizada com uma avaliação dos desempenhos dos modelos obtidos, quando comparados com o sistema. A partir desta avaliação, será possível observar se os modelos identificados são capazes de representar as características estáticas e dinâmicas dos sistemas apresentados nesta dissertação

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Este trabalho tem como objetivo apresentar um aplicativo para auxiliar no planejamento de sistemas elétricos, através de uma metodologia para controle de tensão e minimização das perdas, através da otimização da injeção de reativos, mantendo a tensão nos barramentos dentro de limites pré estabelecidos. A metodologia desenvolvida é baseada em um sistema hibrido, que utiliza inteligência computacional baseada em um algoritmo genético acoplado a um programa de fluxo de carga (ANAREDE), que interagem para produzir uma solução ótima. Os resultados obtidos mostram que a técnica baseada no algoritmo genético é bem adequada ao tipo de problema ora tratado referente a minimização de perdas reativas e a melhoria do perfil da tensão em redes elétricas, sendo este atualmente um problema crítico em parte do Sistema Interligado Nacional (SIN).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An important problem faced by the oil industry is to distribute multiple oil products through pipelines. Distribution is done in a network composed of refineries (source nodes), storage parks (intermediate nodes), and terminals (demand nodes) interconnected by a set of pipelines transporting oil and derivatives between adjacent areas. Constraints related to storage limits, delivery time, sources availability, sending and receiving limits, among others, must be satisfied. Some researchers deal with this problem under a discrete viewpoint in which the flow in the network is seen as batches sending. Usually, there is no separation device between batches of different products and the losses due to interfaces may be significant. Minimizing delivery time is a typical objective adopted by engineers when scheduling products sending in pipeline networks. However, costs incurred due to losses in interfaces cannot be disregarded. The cost also depends on pumping expenses, which are mostly due to the electricity cost. Since industrial electricity tariff varies over the day, pumping at different time periods have different cost. This work presents an experimental investigation of computational methods designed to deal with the problem of distributing oil derivatives in networks considering three minimization objectives simultaneously: delivery time, losses due to interfaces and electricity cost. The problem is NP-hard and is addressed with hybrid evolutionary algorithms. Hybridizations are mainly focused on Transgenetic Algorithms and classical multi-objective evolutionary algorithm architectures such as MOEA/D, NSGA2 and SPEA2. Three architectures named MOTA/D, NSTA and SPETA are applied to the problem. An experimental study compares the algorithms on thirty test cases. To analyse the results obtained with the algorithms Pareto-compliant quality indicators are used and the significance of the results evaluated with non-parametric statistical tests.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En este artículo se plantea la resolución de un problema de Investigación Operativa utilizando PHPSimplex (herramienta online de resolución de problemas de optimización utilizando el método Simplex), Solver de Microsoft Excel y un prototipo híbrido que combina las teorías de los Algoritmos Genéticos con una técnica heurística de búsqueda local. La hibridación de estas dos técnicas es conocida como Algoritmo Memético. Este prototipo será capaz de resolver problemas de Optimización con función de maximización o minimización conocida, superando las restricciones que se planteen. Los tres métodos conseguirán buenos resultados ante problemas sencillos de Investigación Operativa, sin embargo, se propone otro problema en el cual el Algoritmo Memético y la herramienta Solver de Microsoft Excel, alcanzarán la solución óptima. La resolución del problema utilizando PHPSimplex resultará inviable. El objetivo, además de resolver el problema propuesto, es comparar cómo se comportan los tres métodos anteriormente citados ante el problema y cómo afrontan las dificultades que éste presenta. Además, este artículo pretende dar a conocer diferentes técnicas de apoyo a la toma de decisiones, con la intención de que se utilicen cada vez más en el entorno empresarial sustentando, de esta manera, las decisiones mediante la matemática o la Inteligencia Artificial y no basándose únicamente en la experiencia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Con este proyecto hemos querido proporcionar un conjunto de recursos útiles para la impartición de un curso de Swarm Intelligence enfocado a la Particle Swarm Optimization (PSO). Estos recursos constan de una aplicación en NetLogo para poder experimentar, ejecutar y visualizar los diferentes modelos de la PSO, un review de la Swarm Intelligence profundizando en la PSO y una ontología de PSO que incluye los recursos bibliográficos necesarios para la investigación y la escritura de artículos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Investiga se o atual modelo de aplicação da pena privativa de liberdade se mostra adequado aos parâmetros traçados pela constituição de 1988, atendendo ao fundamento da dignidade da pessoa humana e aos objetivos fundamentais de construção de uma sociedade livre, justa e solidária e de promoção do bem de todos. Analisa a dinâmica histórica da aplicação e das teorias das penas privativas de liberdade no Brasil, abordando os principais critérios e atuais orientações da aplicação penal. Sustenta que a dignidade da pessoa humana constitui fundamento do Estado Republicano e Democrático de Direito brasileiro e que, ao lado do princípio da humanidade das penas, seu correspondente penal, fundamenta a necessidade de se evitar ao máximo que os indivíduos sejam afetados pela intervenção do poder punitivo. Conclui, então, pela existência de um autêntico dever jurídico-constitucional da agência judicial no sentido de minimizar a intensidade de afetação do indivíduo sentenciado. Procura erigir novos princípios quanto à aplicação da pena, dotados de força normativa e que atuem de maneira integrada para a tutela dos direitos fundamentais. Defende que a Constituição de 1988 não incorporou o discurso legitimador da pena, limitando-se à tarefa de contenção de danos e de fixação de limites punitivos. Preconiza novos parâmetros para a fixação da pena-base, sustentando a incompatibilidade constitucional das finalidades de reprovação e prevenção do crime. Debate qual deve ser o adequado sentido constitucional das circunstâncias judiciais da pena. Discute as bases da tendência exasperadora da pena, caracterizada pelas agravantes, qualificadoras e causas de aumento, assim como da tendência mitigadora da pena, representada pelas atenuantes, causas de diminuição, participação de agentes, tentativa, concurso de crimes, crime continuado, unificação e limite de penas. Identifica a existência de crise no dogma da pena mínima, propondo, afinal, a construção de um novo modelo interpretativo de aplicação da pena privativa de liberdade.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Esta dissertação tem como objetivo aplicar um algoritmo genético (GA) ao projeto de filtros FIR com coeficientes quantizados representados em somas de potências de dois com sinal (SPT). Os filtros FIR apresentam configurações que permitem a obtenção de fase linear, atributo desejado em diversas aplicações que necessitam de atraso de grupo constante. A representação SPT, de fácil implementação em circuitos, foi discutida e uma comparação das representações SPT mínimas e canônicas foi feita, baseada no potencial de redução de operações e na variedade de valores representáveis. O GA é aplicado na otimização dos coeficientes SPTs do filtro, para que este cumpra as suas especificações de projeto. Foram feitas análises sobre o efeito que diversos parâmetros do GA como a intensidade de seleção, tamanho das populações, cruzamento, mutação, entre outros, têm no processo de otimização. Foi proposto um novo cruzamento que produz a recombinação dos coeficientes e que obteve bons resultados. Aplicou-se o algoritmo obtido na produção de filtros dos tipos passa-baixas, passa-altas, passa-faixas e rejeita-faixas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantum Computing is a relatively modern field which simulates quantum computation conditions. Moreover, it can be used to estimate which quasiparticles would endure better in a quantum environment. Topological Quantum Computing (TQC) is an approximation for reducing the quantum decoherence problem1, which is responsible for error appearance in the representation of information. This project tackles specific instances of TQC problems using MOEAs (Multi-objective Optimization Evolutionary Algorithms). A MOEA is a type of algorithm which will optimize two or more objectives of a problem simultaneously, using a population based approach. We have implemented MOEAs that use probabilistic procedures found in EDAs (Estimation of Distribution Algorithms), since in general, EDAs have found better solutions than ordinary EAs (Evolutionary Algorithms), even though they are more costly. Both, EDAs and MOEAs are population-based algorithms. The objective of this project was to use a multi-objective approach in order to find good solutions for several instances of a TQC problem. In particular, the objectives considered in the project were the error approximation and the length of a solution. The tool we used to solve the instances of the problem was the multi-objective framework PISA. Because PISA has not too much documentation available, we had to go through a process of reverse-engineering of the framework to understand its modules and the way they communicate with each other. Once its functioning was understood, we began working on a module dedicated to the braid problem. Finally, we submitted this module to an exhaustive experimentation phase and collected results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O uso de técnicas com o funcional de Tikhonov em processamento de imagens tem sido amplamente usado nos últimos anos. A ideia básica nesse processo é modificar uma imagem inicial via equação de convolução e encontrar um parâmetro que minimize esse funcional afim de obter uma aproximação da imagem original. Porém, um problema típico neste método consiste na seleção do parâmetro de regularização adequado para o compromisso entre a acurácia e a estabilidade da solução. Um método desenvolvido por pesquisadores do IPRJ e UFRJ, atuantes na área de problemas inversos, consiste em minimizar um funcional de resíduos através do parâmetro de regularização de Tikhonov. Uma estratégia que emprega a busca iterativa deste parâmetro visando obter um valor mínimo para o funcional na iteração seguinte foi adotada recentemente em um algoritmo serial de restauração. Porém, o custo computacional é um fator problema encontrado ao empregar o método iterativo de busca. Com esta abordagem, neste trabalho é feita uma implementação em linguagem C++ que emprega técnicas de computação paralela usando MPI (Message Passing Interface) para a estratégia de minimização do funcional com o método de busca iterativa, reduzindo assim, o tempo de execução requerido pelo algoritmo. Uma versão modificada do método de Jacobi é considerada em duas versões do algoritmo, uma serial e outra em paralelo. Este algoritmo é adequado para implementação paralela por não possuir dependências de dados como de Gauss-Seidel que também é mostrado a convergir. Como indicador de desempenho para avaliação do algoritmo de restauração, além das medidas tradicionais, uma nova métrica que se baseia em critérios subjetivos denominada IWMSE (Information Weighted Mean Square Error) é empregada. Essas métricas foram introduzidas no programa serial de processamento de imagens e permitem fazer a análise da restauração a cada passo de iteração. Os resultados obtidos através das duas versões possibilitou verificar a aceleração e a eficiência da implementação paralela. A método de paralelismo apresentou resultados satisfatórios em um menor tempo de processamento e com desempenho aceitável.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nesse trabalho, foi desenvolvido um simulador numérico (C/C++) para a resolução de escoamentos de fluidos newtonianos incompressíveis, baseado no método de partículas Lagrangiano, livre de malhas, Smoothed Particle Hydrodynamics (SPH). Tradicionalmente, duas estratégias são utilizadas na determinação do campo de pressões de forma a garantir-se a condição de incompressibilidade do fluido. A primeira delas é a formulação chamada Weak Compressible Smoothed Particle Hydrodynamics (WCSPH), onde uma equação de estado para um fluido quase-incompressível é utilizada na determinação do campo de pressões. A segunda, emprega o Método da Projeção e o campo de pressões é obtido mediante a resolução de uma equação de Poisson. No estudo aqui desenvolvido, propõe-se três métodos iterativos, baseados noMétodo da Projeção, para o cálculo do campo de pressões, Incompressible Smoothed Particle Hydrodynamics (ISPH). A fim de validar os métodos iterativos e o código computacional, foram simulados dois problemas unidimensionais: os escoamentos de Couette entre duas placas planas paralelas infinitas e de Poiseuille em um duto infinito e foram usadas condições de contorno do tipo periódicas e partículas fantasmas. Um problema bidimensional, o escoamento no interior de uma cavidade com a parede superior posta em movimento, também foi considerado. Na resolução deste problema foi utilizado o reposicionamento periódico de partículas e partículas fantasmas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Como em qualquer outra organização, as empresas de engenharia química vêm cada vez mais utilizando ferramentas de Tomadas de Decisão para escolhas de soluções técnicas para projetos, operações, desenvolvimento, dentre tantas. A tomada de decisão é o processo de responder a um problema, utilizando um conjunto de técnicas qualitativas e quantitativas para selecionar a solução ou ação, dentre várias alternativas que seja mais adequada para a resolução daquele problema. Dentre estas ferramentas, as mais utilizadas são a MAUT, do inglês Multiattribute Utility Theory (Teoria de Utilidade Multiatributos) e a AHP, do inglês Analytic Hierarchy Process (Processo de Análise Hierárquica).Neste trabalho, estes dois métodos são aplicados num mesmo problema de engenharia química: a seleção de um sistema para tratamento de compostos orgânicos voláteis durante o carregamento de navios que transportam petróleo e derivados. Para isto é realizada, em primeiro lugar, a descrição detalhada de cada método, a conceituação de composto orgânico volátil, a legislação pertinente e a descrição de cada alternativa como solução para controle deste tipo de emissão. Os resultados apontados pelos métodos MAUT e AHP são então comparados a fim de verificar se ambos conduzem a mesma solução. Pretende-se também observar o grau de influencia das diferentes áreas de atuação de uma organização na escolha final da tomada de decisão e verificar as percepções dos profissionais sobre cada método aplicado. Percebeu-se, entretanto, que as metodologias não conduziram, neste trabalho, a soluções idênticas, devido à influência das características de cada método, e que profissionais de uma mesma área de atuação tendem a tomarem o mesmo tipo de decisão