1000 resultados para Algoritmos de decisión
Resumo:
En la actualidad, cualquier compañía de telecomunicaciones que posea su propia red debe afrontar el problema del mantenimiento de la misma. Ofrecer un mínimo de calidad de servicio a sus clientes debe ser uno de sus objetivos principales. Esta calidad debe mantenerse aunque ocurran incidencias en la red. El presente trabajo pretende resolver el problema de priorizar el orden en que se restauran los cables, caminos y circuitos, dañados por una incidencia, dentro de una red troncal de transporte perteneciente a una operadora de telecomunicaciones. Tras un planteamiento detallado del problema y de todos los factores que influirán en la toma de decisión, en primer lugar se acomete una solución basada en Métodos Multicriterio Discretos, concretamente con el uso de ELECTRE I y AHP. A continuación se realiza una propuesta de solución basada en Redes Neuronales (con dos aproximaciones diferentes al problema). Por último se utiliza un método basado en la Optimización por Enjambre de Partículas (PSO), adaptado a un problema de permutación de enteros (ordenación), y con una forma particular de evaluar la mejor posición global del enjambre. Complementariamente se realiza una exposición de lo que es una empresa Operadora de telecomunicaciones, de sus departamentos y procesos internos, de los servicios que ofrece, de las redes sobre las que se soportan, y de los puntos clave a tener en cuenta en la implementación de sus sistemas informáticos de gestión integral. ABSTRACT: Nowadays, any telecommunications company that owns its own network must face the problem of maintaining it (service assurance). Provide a minimum quality of service to its customers must be one of its main objectives. This quality should be maintained although any incidents happen to occur in the network. This thesis aims to solve the problem of prioritizing the order in which the damaged cables, trails, path and circuits, within a backbone transport network, should be restored. This work begins with a detailed explanation about network maintenance issues and all the factors that influence decision-making problem. First of all, one solution based on Discrete Multicriteria methods is tried (ELECTRE I and AHP algorithms are used). Also, a solution based on neural networks (with two different approaches to the problem) is analyzed. Finally, this thesis proposes an algorithm based on Particle Swarm Optimization (PSO), adapted to a problem of integers permutation, and a particular way of evaluating the best overall position of the swarm method. In addition, there is included an exhibition about telecommunications companies, its departments, internal processes, services offered to clients, physical networks, and key points to consider when implementing its integrated management systems.
Resumo:
La tesis propone un marco de trabajo para el soporte de la toma de decisiones adecuado para soportar la ejecución distribuida de acciones cooperativas en entornos multi-agente dinámicos y complejos. Soporte para la toma de decisiones es un proceso que intenta mejorar la ejecución de la toma de decisiones en escenarios cooperativos. Este proceso ocurre continuamente en la vida diaria. Los humanos, por ejemplo, deben tomar decisiones acerca de que ropa usar, que comida comer, etc. En este sentido, un agente es definido como cualquier cosa que está situada en un entorno y que actúa, basado en su observación, su interpretación y su conocimiento acerca de su situación en tal entorno para lograr una acción en particular.Por lo tanto, para tomar decisiones, los agentes deben considerar el conocimiento que les permita ser consientes en que acciones pueden o no ejecutar. Aquí, tal proceso toma en cuenta tres parámetros de información con la intención de personificar a un agente en un entorno típicamente físico. Así, el mencionado conjunto de información es conocido como ejes de decisión, los cuales deben ser tomados por los agentes para decidir si pueden ejecutar correctamente una tarea propuesta por otro agente o humano. Los agentes, por lo tanto, pueden hacer mejores decisiones considerando y representando apropiadamente tal información. Los ejes de decisión, principalmente basados en: las condiciones ambientales, el conocimiento físico y el valor de confianza del agente, provee a los sistemas multi-agente un confiable razonamiento para alcanzar un factible y exitoso rendimiento cooperativo.Actualmente, muchos investigadores tienden a generar nuevos avances en la tecnología agente para incrementar la inteligencia, autonomía, comunicación y auto-adaptación en escenarios agentes típicamente abierto y distribuidos. En este sentido, esta investigación intenta contribuir en el desarrollo de un nuevo método que impacte tanto en las decisiones individuales como colectivas de los sistemas multi-agente. Por lo tanto, el marco de trabajo propuesto ha sido utilizado para implementar las acciones concretas involucradas en el campo de pruebas del fútbol robótico. Este campo emula los juegos de fútbol real, donde los agentes deben coordinarse, interactuar y cooperar entre ellos para solucionar tareas complejas dentro de un escenario dinámicamente cambiante y competitivo, tanto para manejar el diseño de los requerimientos involucrados en las tareas como para demostrar su efectividad en trabajos colectivos. Es así que los resultados obtenidos tanto en el simulador como en el campo real de experimentación, muestran que el marco de trabajo para el soporte de decisiones propuesto para agentes situados es capaz de mejorar la interacción y la comunicación, reflejando en un adecuad y confiable trabajo en equipo dentro de entornos impredecibles, dinámicos y competitivos. Además, los experimentos y resultados también muestran que la información seleccionada para generar los ejes de decisión para situar a los agentes, es útil cuando tales agentes deben ejecutar una acción o hacer un compromiso en cada momento con la intención de cumplir exitosamente un objetivo colectivo. Finalmente, algunas conclusiones enfatizando las ventajas y utilidades del trabajo propuesto en la mejora del rendimiento colectivo de los sistemas multi-agente en situaciones tales como tareas coordinadas y asignación de tareas son presentadas.
Resumo:
El estudio de materiales, especialmente biológicos, por medios no destructivos está adquiriendo una importancia creciente tanto en las aplicaciones científicas como industriales. Las ventajas económicas de los métodos no destructivos son múltiples. Existen numerosos procedimientos físicos capaces de extraer información detallada de las superficie de la madera con escaso o nulo tratamiento previo y mínima intrusión en el material. Entre los diversos métodos destacan las técnicas ópticas y las acústicas por su gran versatilidad, relativa sencillez y bajo coste. Esta tesis pretende establecer desde la aplicación de principios simples de física, de medición directa y superficial, a través del desarrollo de los algoritmos de decisión mas adecuados basados en la estadística, unas soluciones tecnológicas simples y en esencia, de coste mínimo, para su posible aplicación en la determinación de la especie y los defectos superficiales de la madera de cada muestra tratando, en la medida de lo posible, no alterar su geometría de trabajo. Los análisis desarrollados han sido los tres siguientes: El primer método óptico utiliza las propiedades de la luz dispersada por la superficie de la madera cuando es iluminada por un laser difuso. Esta dispersión produce un moteado luminoso (speckle) cuyas propiedades estadísticas permiten extraer propiedades muy precisas de la estructura tanto microscópica como macroscópica de la madera. El análisis de las propiedades espectrales de la luz laser dispersada genera ciertos patrones mas o menos regulares relacionados con la estructura anatómica, composición, procesado y textura superficial de la madera bajo estudio que ponen de manifiesto características del material o de la calidad de los procesos a los que ha sido sometido. El uso de este tipo de láseres implica también la posibilidad de realizar monitorizaciones de procesos industriales en tiempo real y a distancia sin interferir con otros sensores. La segunda técnica óptica que emplearemos hace uso del estudio estadístico y matemático de las propiedades de las imágenes digitales obtenidas de la superficie de la madera a través de un sistema de scanner de alta resolución. Después de aislar los detalles mas relevantes de las imágenes, diversos algoritmos de clasificacion automatica se encargan de generar bases de datos con las diversas especies de maderas a las que pertenecían las imágenes, junto con los márgenes de error de tales clasificaciones. Una parte fundamental de las herramientas de clasificacion se basa en el estudio preciso de las bandas de color de las diversas maderas. Finalmente, numerosas técnicas acústicas, tales como el análisis de pulsos por impacto acústico, permiten complementar y afinar los resultados obtenidos con los métodos ópticos descritos, identificando estructuras superficiales y profundas en la madera así como patologías o deformaciones, aspectos de especial utilidad en usos de la madera en estructuras. La utilidad de estas técnicas esta mas que demostrada en el campo industrial aun cuando su aplicación carece de la suficiente expansión debido a sus altos costes y falta de normalización de los procesos, lo cual hace que cada análisis no sea comparable con su teórico equivalente de mercado. En la actualidad gran parte de los esfuerzos de investigación tienden a dar por supuesto que la diferenciación entre especies es un mecanismo de reconocimiento propio del ser humano y concentran las tecnologías en la definición de parámetros físicos (módulos de elasticidad, conductividad eléctrica o acústica, etc.), utilizando aparatos muy costosos y en muchos casos complejos en su aplicación de campo. Abstract The study of materials, especially the biological ones, by non-destructive techniques is becoming increasingly important in both scientific and industrial applications. The economic advantages of non-destructive methods are multiple and clear due to the related costs and resources necessaries. There are many physical processes capable of extracting detailed information on the wood surface with little or no previous treatment and minimal intrusion into the material. Among the various methods stand out acoustic and optical techniques for their great versatility, relative simplicity and low cost. This thesis aims to establish from the application of simple principles of physics, surface direct measurement and through the development of the more appropriate decision algorithms based on statistics, a simple technological solutions with the minimum cost for possible application in determining the species and the wood surface defects of each sample. Looking for a reasonable accuracy without altering their work-location or properties is the main objetive. There are three different work lines: Empirical characterization of wood surfaces by means of iterative autocorrelation of laser speckle patterns: A simple and inexpensive method for the qualitative characterization of wood surfaces is presented. it is based on the iterative autocorrelation of laser speckle patterns produced by diffuse laser illumination of the wood surfaces. The method exploits the high spatial frequency content of speckle images. A similar approach with raw conventional photographs taken with ordinary light would be very difficult. A few iterations of the algorithm are necessary, typically three or four, in order to visualize the most important periodic features of the surface. The processed patterns help in the study of surface parameters, to design new scattering models and to classify the wood species. Fractal-based image enhancement techniques inspired by differential interference contrast microscopy: Differential interference contrast microscopy is a very powerful optical technique for microscopic imaging. Inspired by the physics of this type of microscope, we have developed a series of image processing algorithms aimed at the magnification, noise reduction, contrast enhancement and tissue analysis of biological samples. These algorithms use fractal convolution schemes which provide fast and accurate results with a performance comparable to the best present image enhancement algorithms. These techniques can be used as post processing tools for advanced microscopy or as a means to improve the performance of less expensive visualization instruments. Several examples of the use of these algorithms to visualize microscopic images of raw pine wood samples with a simple desktop scanner are provided. Wood species identification using stress-wave analysis in the audible range: Stress-wave analysis is a powerful and flexible technique to study mechanical properties of many materials. We present a simple technique to obtain information about the species of wood samples using stress-wave sounds in the audible range generated by collision with a small pendulum. Stress-wave analysis has been used for flaw detection and quality control for decades, but its use for material identification and classification is less cited in the literature. Accurate wood species identification is a time consuming task for highly trained human experts. For this reason, the development of cost effective techniques for automatic wood classification is a desirable goal. Our proposed approach is fully non-invasive and non-destructive, reducing significantly the cost and complexity of the identification and classification process.
Resumo:
Este trabajo se enmarca dentro del ámbito de las Ciudades Inteligentes. Una Ciudad Inteligente se puede definir como aquella ciudad que usa las tecnologías de la información y las comunicaciones para hacer que tanto su infraestructura crítica, como sus componentes y servicios públicos ofrecidos sean más interactivos, eficientes y los ciudadanos puedan ser más conscientes de ellos. Se trata de un concepto emergente que presenta una serie de retos de diseño que se deben abordar. Dos retos importantes son la variabilidad del contexto con el tiempo y la incertidumbre en la información del contexto. Una parte fundamental de estos sistemas, y que permite abordar estos retos, son los mecanismos de toma de decisión. Estos mecanismos permiten a los sistemas modificar su comportamiento en función de los cambios que detecten en su contexto, de manera que puedan adaptarse y responder adecuadamente a la situación en cada momento. Este trabajo tiene como objetivo el desarrollo de algoritmos de toma de decisión en el marco de las Ciudades Inteligentes. En particular, se ha diseñado e implementado, utilizando el software MATLAB, un algoritmo de toma de decisión que aborda los retos mencionados y que se puede aplicar en una de las áreas que engloban las Ciudades Inteligentes: los Sistemas Inteligentes de Transporte. Este proyecto se estructura fundamentalmente en dos partes: una parte teórica y una parte práctica. En la parte teórica se trata de proporcionar al lector nociones básicas sobre los conceptos de Ciudad Inteligente y Sistemas Inteligentes de Transporte, así como de la toma de decisión. También se explican los pasos del procedimiento de la toma de decisión y se proporciona un estado del arte de los algoritmos de toma de decisión existentes. Por otro lado, la segunda parte de este proyecto es totalmente original, y en ella el autor propone un algoritmo de toma de decisión para ser aplicado en el ámbito de los Sistemas Inteligentes de Transporte y desarrolla la implementación en MATLAB del algoritmo mencionado. Por último, para demostrar su funcionamiento, se valida el algoritmo en un escenario de aplicación consistente en un sistema inteligente de gestión del tráfico. ABSTRACT. This master thesis is framed under Smart Cities environment. A Smart City can be defined as the use of Information and Communication Technologies to make the critical infrastructure components and services of a city more intelligent, interconnected and efficient and citizens can be also more aware of them. Smart City is a new concept which presents a novel set of design challenges that must be addressed. Two important challenges are the changeable context and the uncertainty of context information. One of the essential parts of Smart Cities, which enables to address these challenges, are decision making mechanisms. Based on the information collected of the context, these systems can be configured to change its behavior whenever certain changes are detected, so that they can adapt themselves and response to the current situation properly. This master thesis is aimed at developing decision making algorithms under Smart Cities framework. In particular, a decision making algorithm which addresses the abovementioned challenges and that can be applied to one of the main categories of Smart Cities, named Intelligent Transportation Systems, has been designed and implemented. To do so, MATLAB software has been used. This project is mainly structured in two parts: a theoretical part and a practical part. In theoretical part, basic ideas about the concept of Smart Cities and Intelligent Transportation Systems are given, as well as the concept of decision making. The steps of the decision making procedure are also explained and a state of the art of existing decision making algorithms is provided. On the other hand, the second part of this project is totally original. In this part, the author propose a decision making algorithm that can be applied to Intelligent Transportation Systems and develops the implementation of the algorithm in MATLAB. Finally, to show the operation of the algorithm, it is validated in an application scenario consisting in a smart traffic management system.
Resumo:
ste trabajo presenta un análisis comparativo entre tres algoritmos de aprendizaje diferentes basados en Árboles de Decisión (C4.5) y Redes Neuronales Artificiales (Perceptrón Multicapa MLP y Red Neuronal de Regresión General GRNN) que han sido implementados con el objetivo de predecir los resultados de la rehabilitación cognitiva de personas con daño cerebral adquirido. En el análisis se han incluido datos demográficos del paciente, el perfil de afectación y los resultados provenientes de las tareas de rehabilitación ejecutadas por los pacientes. Los modelos han sido evaluados utilizando la base de datos del Institut Guttmann. El rendimiento de los algoritmos se midió a través del análisis de la especificidad, sensibilidad y exactitud en la precisión y el análisis de la matriz de confusión. Los resultados muestran que la implementación del C4.5 alcanzó una especificidad, sensibilidad y exactitud en la precisión del 98.43%, 83.77% y 89.42% respectivamente. El rendimiento del C4.5 fue significativamente superior al obtenido por el Perceptrón Multicapa y la Red de Regresión General.
Resumo:
El desarrollo de algoritmos ensambladores de genes y la utilización de estos está viviendo un aumento muy espectacular en los últimos años. Debido a las mejoras ofrecidas en los dispositivos hardware de los numerosos supercomputadores que existen hoy en día se pueden realizar experimentos científicos de una manera más asequible que hace unos años. Este proyecto servirá como introducción en el complejo mundo de algoritmos científicos, más concretamente en algoritmos ensambladores de genomas. Veremos de primera mano cómo utilizar estas nuevas tecnologías, con ejemplos sencillos, pero con un desarrollo lo bastante importante para darnos una idea del funcionamiento de todas las fases de experimentación que engloban los algoritmos ensambladores y la utilización de la programación paralela en supercomputadores. Concretamente en este proyecto se van a analizar exhaustivamente una serie de algoritmos ensambladores que serán probados en uno de los supercomputadores más potentes de España, el Magerit 2. En estas pruebas vamos a proceder al ensamblado de genomas de tres tipos de organismos como bacterias (Staphylococcus Aureus, y Rhodobacter Sphaeroides) y una prueba gran escala con el genoma del Cromosoma 14 del Homo Sapiens Sapiens (Ser humano). Después procederemos a la comparación de todos los resultados obtenidos para poder comprobar que algoritmos realizan mejor su trabajo y ajustar dicha decisión a las necesidades que tenemos actualmente para buscar un algoritmo eficaz.
Resumo:
La diabetes mellitus es el conjunto de alteraciones provocadas por un defecto en la cantidad de insulina secretada o por un aprovechamiento deficiente de la misma. Es causa directa de complicaciones a corto, medio y largo plazo que disminuyen la calidad y las expectativas de vida de las personas con diabetes. La diabetes mellitus es en la actualidad uno de los problemas más importantes de salud. Ha triplicado su prevalencia en los últimos 20 anos y para el año 2025 se espera que existan casi 300 millones de personas con diabetes. Este aumento de la prevalencia junto con la morbi-mortalidad asociada a sus complicaciones micro y macro-vasculares convierten la diabetes en una carga para los sistemas sanitarios, sus recursos económicos y sus profesionales, haciendo de la enfermedad un problema individual y de salud pública de enormes proporciones. De momento no existe cura a esta enfermedad, de modo que el objetivo terapéutico del tratamiento de la diabetes se centra en la normalización de la glucemia intentando minimizar los eventos de hiper e hipoglucemia y evitando la aparición o al menos retrasando la evolución de las complicaciones vasculares, que constituyen la principal causa de morbi-mortalidad de las personas con diabetes. Un adecuado control diabetológico implica un tratamiento individualizado que considere multitud de factores para cada paciente (edad, actividad física, hábitos alimentarios, presencia de complicaciones asociadas o no a la diabetes, factores culturales, etc.). Sin embargo, a corto plazo, las dos variables más influyentes que el paciente ha de manejar para intervenir sobre su nivel glucémico son la insulina administrada y la dieta. Ambas presentan un retardo entre el momento de su aplicación y el comienzo de su acción, asociado a la absorción de los mismos. Por este motivo la capacidad de predecir la evolución del perfil glucémico en un futuro cercano, ayudara al paciente a tomar las decisiones adecuadas para mantener un buen control de su enfermedad y evitar situaciones de riesgo. Este es el objetivo de la predicción en diabetes: adelantar la evolución del perfil glucémico en un futuro cercano para ayudar al paciente a adaptar su estilo de vida y sus acciones correctoras, con el propósito de que sus niveles de glucemia se aproximen a los de una persona sana, evitando así los síntomas y complicaciones de un mal control. La aparición reciente de los sistemas de monitorización continua de glucosa ha proporcionado nuevas alternativas. La disponibilidad de un registro exhaustivo de las variaciones del perfil glucémico, con un periodo de muestreo de entre uno y cinco minutos, ha favorecido el planteamiento de nuevos modelos que tratan de predecir la glucemia utilizando tan solo las medidas anteriores de glucemia o al menos reduciendo significativamente la información de entrada a los algoritmos. El hecho de requerir menor intervención por parte del paciente, abre nuevas posibilidades de aplicación de los predictores de glucemia, haciéndose viable su uso en tiempo real, como sistemas de ayuda a la decisión, como detectores de situaciones de riesgo o integrados en algoritmos automáticos de control. En esta tesis doctoral se proponen diferentes algoritmos de predicción de glucemia para pacientes con diabetes, basados en la información registrada por un sistema de monitorización continua de glucosa así como incorporando la información de la insulina administrada y la ingesta de carbohidratos. Los algoritmos propuestos han sido evaluados en simulación y utilizando datos de pacientes registrados en diferentes estudios clínicos. Para ello se ha desarrollado una amplia metodología, que trata de caracterizar las prestaciones de los modelos de predicción desde todos los puntos de vista: precisión, retardo, ruido y capacidad de detección de situaciones de riesgo. Se han desarrollado las herramientas de simulación necesarias y se han analizado y preparado las bases de datos de pacientes. También se ha probado uno de los algoritmos propuestos para comprobar la validez de la predicción en tiempo real en un escenario clínico. Se han desarrollado las herramientas que han permitido llevar a cabo el protocolo experimental definido, en el que el paciente consulta la predicción bajo demanda y tiene el control sobre las variables metabólicas. Este experimento ha permitido valorar el impacto sobre el control glucémico del uso de la predicción de glucosa. ABSTRACT Diabetes mellitus is the set of alterations caused by a defect in the amount of secreted insulin or a suboptimal use of insulin. It causes complications in the short, medium and long term that affect the quality of life and reduce the life expectancy of people with diabetes. Diabetes mellitus is currently one of the most important health problems. Prevalence has tripled in the past 20 years and estimations point out that it will affect almost 300 million people by 2025. Due to this increased prevalence, as well as to morbidity and mortality associated with micro- and macrovascular complications, diabetes has become a burden on health systems, their financial resources and their professionals, thus making the disease a major individual and a public health problem. There is currently no cure for this disease, so that the therapeutic goal of diabetes treatment focuses on normalizing blood glucose events. The aim is to minimize hyper- and hypoglycemia and to avoid, or at least to delay, the appearance and development of vascular complications, which are the main cause of morbidity and mortality among people with diabetes. A suitable, individualized and controlled treatment for diabetes involves many factors that need to be considered for each patient: age, physical activity, eating habits, presence of complications related or unrelated to diabetes, cultural factors, etc. However, in the short term, the two most influential variables that the patient has available in order to manage his/her glycemic levels are administered insulin doses and diet. Both suffer from a delay between their time of application and the onset of the action associated with their absorption. Therefore, the ability to predict the evolution of the glycemic profile in the near future could help the patient to make appropriate decisions on how to maintain good control of his/her disease and to avoid risky situations. Hence, the main goal of glucose prediction in diabetes consists of advancing the evolution of glycemic profiles in the near future. This would assist the patient in adapting his/her lifestyle and in taking corrective actions in a way that blood glucose levels approach those of a healthy person, consequently avoiding the symptoms and complications of a poor glucose control. The recent emergence of continuous glucose monitoring systems has provided new alternatives in this field. The availability of continuous records of changes in glycemic profiles (with a sampling period of one or five minutes) has enabled the design of new models which seek to predict blood glucose by using automatically read glucose measurements only (or at least, reducing significantly the data input manually to the algorithms). By requiring less intervention by the patient, new possibilities are open for the application of glucose predictors, making its use feasible in real-time applications, such as: decision support systems, hypo- and hyperglycemia detectors, integration into automated control algorithms, etc. In this thesis, different glucose prediction algorithms are proposed for patients with diabetes. These are based on information recorded by a continuous glucose monitoring system and incorporate information of the administered insulin and carbohydrate intakes. The proposed algorithms have been evaluated in-silico and using patients’ data recorded in different clinical trials. A complete methodology has been developed to characterize the performance of predictive models from all points of view: accuracy, delay, noise and ability to detect hypo- and hyperglycemia. In addition, simulation tools and patient databases have been deployed. One of the proposed algorithms has additionally been evaluated in terms of real-time prediction performance in a clinical scenario in which the patient checked his/her glucose predictions on demand and he/she had control on his/her metabolic variables. This has allowed assessing the impact of using glucose prediction on glycemic control. The tools to carry out the defined experimental protocols were also developed in this thesis.
Resumo:
El conjunto eficiente en la Teoría de la Decisión Multicriterio juega un papel fundamental en los procesos de solución ya que es en este conjunto donde el decisor debe hacer su elección más preferida. Sin embargo, la generación de tal conjunto puede ser difícil, especialmente en problemas continuos y/o no lineales. El primer capítulo de esta memoria, es introductorio a la Decisión Multicriterio y en él se exponen aquellos conceptos y herramientas que se van a utilizar en desarrollos posteriores. El segundo capítulo estudia los problemas de Toma de Decisiones en ambiente de certidumbre. La herramienta básica y punto de partida es la función de valor vectorial que refleja imprecisión sobre las preferencias del decisor. Se propone una caracterización del conjunto de valor eficiente y diferentes aproximaciones con sus propiedades de encaje y convergencia. Varios algoritmos interactivos de solución complementan los desarrollos teóricos. El tercer capítulo está dedicado al caso de ambiente de incertidumbre. Tiene un desarrollo parcialmente paralelo al anterior y utiliza la función de utilidad vectorial como herramienta de modelización de preferencias del decisor. A partir de la consideración de las distribuciones simples se introduce la eficiencia en utilidad, su caracterización y aproximaciones, que posteriormente se extienden a los casos de distribuciones discretas y continuas. En el cuarto capítulo se estudia el problema en ambiente difuso, aunque de manera introductoria. Concluimos sugiriendo distintos problemas abiertos.---ABSTRACT---The efficient set of a Multicriteria Decicion-Making Problem plays a fundamental role in the solution process since the Decisión Maker's preferred choice should be in this set. However, the computation of that set may be difficult, specially in continuous and/or nonlinear problems. Chapter one introduces Multicriteria Decision-Making. We review basic concepts and tools for later developments. Chapter two studies Decision-Making problems under certainty. The basic tool is the vector valué function, which represents imprecisión in the DM's preferences. We propose a characterization of the valué efficient set and different approximations with nesting and convergence properties. Several interactive algorithms complement the theoretical results. We devote Chapter three to problems under uncertainty. The development is parallel to the former and uses vector utility functions to model the DM's preferences. We introduce utility efficiency for simple distributions, its characterization and some approximations, which we partially extend to discrete and continuous classes of distributions. Chapter four studies the problem under fuzziness, at an exploratory level. We conclude with several open problems.
Resumo:
En la actualidad, cualquier ámbito profesional cuenta con herramientas software especializadas que mejoran la productividad en la realización de tareas repetitivas o facilitan la ejecución de tareas críticas con un alto grado de especialización. Entre estos sistemas software especializados se encuentran las herramientas informáticas que sirven de apoyo a la toma de decisiones, a veces basadas en sistemas expertos, que pueden alcanzar un grado de eficiencia y exactitud incomparables con procesos de elaboración artesanal. En este proyecto se detalla la creación de un sistema de ayuda a la toma de decisión clínica para la elaboración de pautas vacunales aceleradas en personas que no se encuentran correctamente vacunadas según su calendario de vacunación. Esta herramienta se sirve de una serie de algoritmos, extraídos de conocimiento experto y encargados de calcular un calendario de vacunación acelerado a medida del paciente, según su edad, género y dosis previamente administradas. Estos algoritmos son totalmente configurables y pueden ser adaptados a cualquier tipo de calendario vacunal y vacunas que formen parte de él. La herramienta software desarrollada en este trabajo pretende dar servicios a dos tipos de usuario. Los usuarios con perfil enfermero podrán acceder a la herramienta para la elaboración de pautas de vacunación acelerada. Los usuarios con perfil administrador podrán definir para cada una de las vacunas dadas de alta en el sistema los algoritmos de pautas de vacunación aceleradas según la edad del paciente y las dosis previamente recibidas dentro de cada rango temporal. El objetivo principal del proyecto consiste en contribuir, mediante un software de ayuda a la toma de decisión, a reducir el índice de error humano en el diseño de pautas de corrección vacunales, suministrando para ello unas pautas exactas y adecuadas a las circunstancias del paciente y su historia vacunal previa.
Resumo:
En este Trabajo Fin de Grado se lleva a cabo la implementación de un mundo 3D a través del uso del entorno Unity en el se cual realizará el desarrollo de un agente 3D el cual interactúe con el entorno que le rodea. Para ello haremos uso de algoritmos relacionado con la inteligencia artificial así como aplicación de algoritmos relacionados con la minería de datos tales como redes neuronales basando su aprendizaje en algoritmos evolutivos o arboles de decisión, respectivamente. Así pues, el objetivo de este proyecto es la creación de un agente 3D el cual sea capaz de adaptarse al entorno que le rodea, siendo hostiles algunos de estos entornos. Habrá principalmente 2 entornos los cuales serán una ciudad donde el agente deberá recoger clientes en su rol de taxista y soltarlas reconociendo a través de una serie de variables que personas son de fiar y cuales no. El segundo entorno es una cancha de baloncesto donde el agente deberá aprender a lanzar a canasta y reconocer con qué estados meteorológicos es viable jugar.
Resumo:
A definição das parcelas familiares em projetos de reforma agrária envolve questões técnicas e sociais. Essas questões estão associadas principalmente às diferentes aptidões agrícolas do solo nestes projetos. O objetivo deste trabalho foi apresentar método para realizar o processo de ordenamento territorial em assentamentos de reforma agrária empregando Algoritmo Genético (AG). O AG foi testado no Projeto de Assentamento Veredas, em Minas Gerais, e implementado com base no sistema de aptidão agrícola das terras.
Resumo:
Este artigo avalia os diferentes impactos de variáveis relevantes na descoberta e na difusão de tecnologias, em mercados de alta competitividade. O objetivo foi identificar possibilidades de convívio de diferentes grupos estratégicos, associados ao uso ou à produção de tecnologias convencionais ou inovadoras. Foi utilizado um método matemático de busca e otimização, inspirado nos mecanismos da genética e na evolução de população de seres vivos. Os resultados obtidos sugerem que a interação entre empresas inovadoras pode, simultaneamente, permitir um aprimoramento da tecnologia e criar obstáculos para a entrada de novos competidores. Apesar de ser uma simplificação que não permite incorporar toda a complexidade do mercado, o modelo possibilita uma investigação dos comportamentos corporativos e de evolução de estratégias tecnológicas, principalmente em situações em que é difícil levantar dados empíricos ou em que casos específicos não permitem generalizações de evidências.
Resumo:
Ao me ter sido apresentado o tema focado neste trabalho, a curiosidade apoderou-se de mim para tentar perceber o que eram os algoritmos genéticos, a aprendizagem automática e a aplicação dos algoritmos genéticos sobre este tipo de aprendizagem e onde é que estas técnicas podiam ser aplicadas. Assim, neste trabalho é realizado um estudo destes temas relativamente ao seu funcionamento, aplicabilidade, problemas e soluções existentes, bem como, a comparação entre duas das mais conhecidas abordagens ao nível da aprendizagem automática baseada em algoritmos genéticos. São no fim apresentados programas exemplificativos de implementações de aplicação de algoritmos genéticos a problemas de optimização/descoberta e de aprendizagem automática. Este texto está organizado em cinco capítulos, sendo o primeiro a introdução, o segundo é uma apresentação dos algoritmos genéticos, no terceiro capítulo é apresentada a técnica de aprendizagem automática baseada em algoritmos genéticos, as suas diferentes abordagens e implementações, aplicabilidade e comparação entre abordagens. No quarto capítulo são apresentados alguns exemplos práticos que pretendem demonstrar a forma como se implementam algumas das abordagens referidas nos capítulos anteriores com o intuito de ver o seu funcionamento na prática e comparar diferentes algoritmos no mesmo problema.
Resumo:
De entre todos os paradigmas de aprendizagem actualmente identificados, a Aprendizagem por Reforço revela-se de especial interesse e aplicabilidade nos inúmeros processos que nos rodeiam: desde a solitária sonda que explora o planeta mais remoto, passando pelo programa especialista que aprende a apoiar a decisão médica pela experiencia adquirida, até ao cão de brincar que faz as delícias da criança interagindo com ela e adaptando-se aos seus gostos, e todo um novo mundo que nos rodeia e apela crescentemente a que façamos mais e melhor nesta área. Desde o aparecimento do conceito de aprendizagem por reforço, diferentes métodos tem sido propostos para a sua concretização, cada um deles abordando aspectos específicos. Duas vertentes distintas, mas complementares entre si, apresentam-se como características chave do processo de aprendizagem por reforço: a obtenção de experiência através da exploração do espaço de estados e o aproveitamento do conhecimento obtido através dessa mesma experiência. Esta dissertação propõe-se seleccionar alguns dos métodos propostos mais promissores de ambas as vertentes de exploração e aproveitamento, efectuar uma implementação de cada um destes sobre uma plataforma modular que permita a simulação do uso de agentes inteligentes e, através da sua aplicação na resolução de diferentes configurações de ambientes padrão, gerar estatísticas funcionais que permitam inferir conclusões que retractem entre outros aspectos a sua eficiência e eficácia comparativas em condições específicas.
Resumo:
A presente dissertação apresenta um conjunto de algoritmos, cujo objetivo é a determinação da capacidade máxima de energia que é possível integrar numa rede de energia elétrica, seja num único nó ou em vários nós simultaneamente. Deste modo, obtém-se uma indicação dos locais mais adequados à nova instalação de geração e quais os reforços de rede necessários, de forma a permitirem a alocação da nova energia. Foram estudados e identificados os fatores que influenciam o valor da capacidade máxima nodal, assim como as suas consequências no funcionamento da rede, em particular o carácter simultâneo associado às referidas injeções nodais. Nesse sentido, são apresentados e desenvolvidos algoritmos que têm em consideração as características técnicas da geração a ligar e as restrições físicas impostas pela rede elétrica existente. Os algoritmos desenvolvidos apresentados baseiam-se em busca gaussiana, tendo sido igualmente implementada uma heurística que tem em consideração a proximidade de outras injeções em nós adjacentes e finalmente, dada a natureza combinatória do problema, propõe-se a aplicação de algoritmos genéticos especificamente adaptados ao problema Conclui-se que os algoritmos genéticos encerram características que lhes permitem ser aplicados em qualquer topologia com resultados superiores a todos os algoritmos desenvolvidos. Os métodos apresentados foram desenvolvidos e implementados usando a linguagem de programação Python, tendo-se desenvolvido ainda um interface visual ao utilizador, baseado em wxPython, onde estão implementadas diversas ferramentas que possibilitam a execução dos algoritmos, a configuração dos seus parâmetros e ainda o acesso à informação resultante dos algoritmos em formato Excel.