978 resultados para Aldosterone Synthase
Resumo:
Background In familial hyperaldosteronism type I (FH-I), glucocorticoid treatment suppresses adrenocorticotrophic hormone-regulated hybrid gene expression and corrects hyperaldosteronism. Objective To determine whether the wild-type aldosterone synthase genes, thereby released from chronic suppression, are capable of functioning normally. Methods We compared mid-morning levels of plasma potassium, plasma aldosterone, plasma renin activity (PRA) and aldosterone : PRA ratios, measured with patients in an upright position, and responsiveness of aldosterone levels to infusion of angiotensin II (AII), for 11 patients with FH-I before and during long-term (0.8-14.3 years) treatment with 0.25-0.75 mg/day dexamethasone or 2.5-10 mg/day prednisolone. Results During glucocorticoid treatment, hypertension was corrected in all. Potassium levels, which had been low (< 3.5 mmol/l) in two patients before treatment, were normal in all during treatment (mean 4.0 +/- 0.1 mmol/l, range 3.5-4.6). Aldosterone levels during treatment [13.2 +/- 2.1 ng/100 ml (mean +/- SEM)] were lower than those before treatment (20.1 +/- 2.5 ng/100 ml, P < 0.05). PRA levels, which had been suppressed before treatment (0.5 +/- 0.2 ng/ml per h), were unsuppressed during treatment (5.1 +/- 1.5 ng/ml per h, P < 0.01) and elevated (> 4 ng/ml per h) in six patients. Aldosterone : PRA ratios, which had been elevated (> 30) before treatment (101.1 +/- 25.9), were much lower during treatment (4.1 +/- 1.0, P < 0.005) and below normal (< 5) in eight patients. Surprisingly, aldosterone level, which had not been responsive (< 50% rise) to infusion of AII for all 11 patients before treatment, remained unresponsive for 10 during treatment. Conclusions Apparently regardless of duration of glucocorticoid treatment in FH-I, aldosterone level remains poorly responsive to AII, with a higher than normal PRA and a low aldosterone : PRA ratio. This is consistent with there being a persistent defect in functioning of wild-type aldosterone synthase gene. (C) Rapid Science Publishers ISSN 0263-6352.
Resumo:
Familial hyperaldosteronism type II (FH-II) is characterized by autosomal dominant inheritance and hypersecretion of aldosterone due to adrenocortical hyperplasia or an aldosterone-producing adenoma; unlike FH type I (FH-I), hyperaldosteronism in FH-II is not suppressible by dexamethasone. Of a total of 17 FH-II families with 44 affected members, we studied a large kindred with 7 affected members that was informative for linkage analysis. Family members were screened with the aldosterone/PRA ratio test; patients with aldosterone/PRA ratio greater than 25 underwent fludrocortisone/salt suppression testing for confirmation of autonomous aldosterone secretion. Postural testing, adrenal gland imaging, and adrenal venous sampling were also performed. Individuals affected by FH-II demonstrated lack of suppression of plasma A levels after 4 days of dexamethasone treatment (0.5 mg every 6 h). All patients had neg ative genetic testing for the defect associated with FH-I, the CYP11B1/CYP11B2 hybrid gene. Genetic linkage was then examined between FH-II and aldosterone synthase (the CYP11B2 gene) on chromosome 8q. A polyadenylase repeat within the 5'-region of the CYP11B2 gene and 9 other markers covering an approximately 80-centimorgan area on chromosome 8q21-8qtel were genotyped and analyzed for linkage. Two-point logarithm of odds scores were negative and ranged from -12.6 for the CYP11B2 polymorphic marker to -0.98 for the D8S527 marker at a recombination distance (theta) of 0. Multipoint logarithm of odds score analysis confirmed the exclusion of the chromosome 8q21-8qtel area as a region harboring the candidate gene for FH-II in this family. We conclude that FH-II shares autosomal dominant inheritance and hyperaldosteronism with FH-I, but, as demonstrated by the large kindred investigated in this report, it is clinically and genetically distinct. Linkage analysis demonstrated that the CYP11B2 gene is not responsible for FH-II in this family; furthermore, chromosome 8q21-8qtel most likely does not harbor the genetic defect in this kindred.
Resumo:
Resistant hypertension (RH) is the maintenance of elevated blood pressure concurrent with the use of three different antihypertensive drugs, one of which is a diuretic. The Renin-Angiotensin-Aldosterone System plays a major role in volume-dependent hypertension. Therefore, its components are interesting targets for genetic association studies. This work focused on the -344 C/T polymorphism in the CYP11b2 gene, which encodes aldosterone synthase. This work evaluates the association between T allele and resistance to anti-hypertensive treatment. Genotyping analysis included 88 subjects with RH, 142 who were responsive to anti-hypertensive treatment and 110 subjects as a control group. Plasmatic concentrations of aldosterone, renin and cortisol, carotid intima-media thickness and carotid-femoral pulse wave velocity were assessed in a smaller subset of hypertensive patients. An association was found between T allele and hypertension (P < 0.005), but there was no difference in allele frequencies between both hypertensive groups. There was no difference in plasmatic parameters either, in remodeling indicators between the genotypic groups.
Resumo:
Compounds containing the pyrrolidine moiety are key substructures of compounds with biological activity and organocatalysts. In particular, annulated chiral pyrrolidines with alpha stereogenic centers have aldostereone synthase inhibition activity. In addition, 5-substituted pyrroloimidazol(in)ium salts precursors to N-heterocyclic carbene (NHC) precatalysts are rare due to a lack of convenient synthetic routes to access them. In this thesis is described a rapid synthesis of NHC precursors and a possible route to 5-substituted pyrroloimidazole biologically active compounds. The method involves the preparation of chiral saturated and achiral unsaturated pyrrolo[I,2- c]imidazol-3-ones from N-Cbz-protected t-Butyl proline carboxamide. The resulting starting materials may be used to prepare the target chiral annulated imidazol(in)ium products by a two-step sequence involving first stereoselective lithiation-substitution, followed by POCh induced salt formation.
Resumo:
The physiological mechanisms involved in isoproterenol (ISO)-induced chronic heart failure (CHF) are not fully understood. In this study, we investigated local changes in cardiac aldosterone and its synthase in rats with ISO-induced CHF, and evaluated the effects of treatment with recombinant human brain natriuretic peptide (rhBNP). Sprague-Dawley rats were divided into 4 different groups. Fifty rats received subcutaneous ISO injections to induce CHF and the control group (n=10) received equal volumes of saline. After establishing the rat model, 9 CHF rats received no further treatment, rats in the low-dose group (n=8) received 22.5 μg/kg rhBNP and those in the high-dose group (n=8) received 45 μg/kg rhBNP daily for 1 month. Cardiac function was assessed by echocardiographic and hemodynamic analysis. Collagen volume fraction (CVF) was determined. Plasma and myocardial aldosterone concentrations were determined using radioimmunoassay. Myocardial aldosterone synthase (CYP11B2) was detected by quantitative real-time PCR. Cardiac function was significantly lower in the CHF group than in the control group (P<0.01), whereas CVF, plasma and myocardial aldosterone, and CYP11B2 transcription were significantly higher than in the control group (P<0.05). Low and high doses of rhBNP significantly improved hemodynamics (P<0.01) and cardiac function (P<0.05) and reduced CVF, plasma and myocardial aldosterone, and CYP11B2 transcription (P<0.05). There were no significant differences between the rhBNP dose groups (P>0.05). Elevated cardiac aldosterone and upregulation of aldosterone synthase expression were detected in rats with ISO-induced CHF. Administration of rhBNP improved hemodynamics and ventricular remodeling and reduced myocardial fibrosis, possibly by downregulating CYP11B2 transcription and reducing myocardial aldosterone synthesis.
Resumo:
We compared the aldosterone-producing potency of the angiotensin II-sensitive wild-type aldosterone synthase genes and the ACTH-sensitive hybrid 11 beta-hydroxylase/aldosterone synthase gene by examining aldosterone, PRA, and cortisol day-curves (2-hourly levels over 24 h) in patients with familial hyperaldosteronism type I, before and during long-term (0.8-13.5 yr) glucocorticoid treatment. In 8 untreated patients, PRA levels were usually suppressed, and aldosterone correlated strongly with cortisol (r = 0.69-0.99). Fourteen studies were performed on 10 patients receiving glucocorticoid treatment that corrected hypertension, hypokalemia, and PRA suppression in all. ACTH was markedly and continuously suppressed in 6 studies, 3 of which demonstrated strong correlations between aldosterone and PRA (r = 0.77-0.92), ACTH was only partially suppressed in the remaining 8 studies; aldosterone correlated strongly: 1) with cortisol alone in 5 (r = 0.71-0.98); 2) with cortisol (r = 0.90) and PRA (r = 0.74) in one; 3) with PRA only in one (r = 0.80); and 4) with neither PRA nor cortisol in one. Unless ACTH is markedly and continuously suppressed, aldosterone is more responsive to ACTH than to renin/angiotensin II, despite the latter being unsuppressed. This is consistent with the hybrid gene being more powerfully expressed than the wild-type aldosterone synthase genes in familial hyperaldosteronism type I.
Resumo:
BACKGROUND/AIMS: Primary hypoaldosteronism is a rare inborn disorder with life-threatening symptoms in newborns and infants due to an aldosterone synthase defect. Diagnosis is often difficult as the plasma aldosterone concentration (PAC) can remain within the normal range and thus lead to misinterpretation and delayed initiation of life-saving therapy. We aimed to test the eligibility of the PAC/plasma renin concentration (PRC) ratio as a tool for the diagnosis of primary hypoaldosteronism in newborns and infants. Meth ods: Data of 9 patients aged 15 days to 12 months at the time of diagnosis were collected. The diagnosis of primary hypoaldosteronism was based on clinical and laboratory findings over a period of 12 years in 3 different centers in Switzerland. To enable a valid comparison, the values of PAC and PRC were correlated to reference methods. RESULTS: In 6 patients, the PAC/PRC ratio could be determined and showed constantly decreased values <1 (pmol/l)/(mU/l). In 2 patients, renin was noted as plasma renin activity (PRA). PAC/PRA ratios were also clearly decreased. The diagnosis was subsequently genetically confirmed in 8 patients. CONCLUSION: A PAC/PRC ratio <1 pmol/mU and a PAC/PRA ratio <28 (pmol/l)/(ng/ml × h) are reliable tools to identify primary hypoaldosteronism in newborns and infants and help to diagnose this life-threatening disease faster. © 2015 S. Karger AG, Basel.
Resumo:
Essential hypertension is a disease multifactorially triggered by genetic and environmental factors. The contribution of genetic polymorphisms of the renin-angiotensin-aldosterone system and clinical risk factors to the development of resistant hypertension was evaluated in 90 hypertensive patients and in 115 normotensive controls living in Southwestern Brazil. Genotyping for insertion/deletion of angiotensin-converting enzyme, angiotensinogen M235T, angiotensin II type 1 receptor A1166C, aldosterone synthase C344T, and mineralocorticoid receptor A4582C polymorphisms was performed by PCR, with further restriction analysis when required. The influence of genetic polymorphisms on blood pressure variation was assessed by analysis of the odds ratio, while clinical risk factors were evaluated by logistic regression. Our analysis indicated that individuals who carry alleles 235-T, 1166-A, 344-T, or 4582-C had a significant risk of developing resistant hypertension (P < 0.05). Surprisingly, when we tested individuals who carried the presumed risk genotypes A1166C, C344T, and A4582C we found that these genotypes were not associated with resistant hypertension. However, a gradual increase in the risk to develop resistant hypertension was detected when the 235-MT and TT genotypes were combined with one, two or three of the supposedly more vulnerable genotypes - A1166C (AC/AA), C344T (TC/TT) and A4582C (AC/CC). Analysis of clinical parameters indicated that age, body mass index and gender contribute to blood pressure increase (P < 0.05). These results suggest that unfavorable genetic renin-angiotensin-aldosterone system patterns and clinical risk variables may contribute to increasing the risk for the development of resistant hypertension in a sample of the Brazilian population.
Vascular endothelial growth factor-A and aldosterone: relevance to normal pregnancy and preeclampsia
Resumo:
Aldosterone levels are markedly elevated during normal pregnancy but fall even though volume contracts when preeclampsia occurs. The level of aldosterone in either condition cannot be explained solely by the activity of the renin-angiotensin II system. In normal gestation, vascular endothelial growth factor (VEGF) is thought to maintain vascular health, but its role in adrenal hormone production is unknown. We hypothesized that the role of VEGF in the adrenal gland is to maintain vascular health and regulate aldosterone production. Here, we demonstrate that supernatant of endothelial cells grown in the presence of VEGF enhanced aldosterone synthase activity in human adrenocortical cells. VEGF either alone or combined with angiotensin II increased aldosterone production in adrenal cells. These data suggest that endothelial cell-dependent and independent activation of aldosterone is regulated by VEGF. In contrast to angiotensin II, VEGF did not upregulate the steroidogenic acute regulatory protein. Consistent with this observation, angiotensin II stimulated both aldosterone and cortisol synthesis from progesterone, whereas VEGF stimulated selectively aldosterone production. In rats, overexpression of soluble fms-like tyrosine kinase-1, an endogenous VEGF inhibitor, led to adrenocortical capillary rarefaction and fall in aldosterone concentrations that correlated inversely with soluble fms-like tyrosine kinase-1 levels. These findings may explain why aldosterone increases so markedly during normal gestation and why preeclampsia, a condition characterized by high soluble fms-like tyrosine kinase-1, is associated with inappropriately low aldosterone levels in spite of relatively lower plasma volumes.
Resumo:
Circulating aldosterone levels are increased in human pregnancy. Inadequately low aldosterone levels as present in preeclampsia, a life-threatening disease for both mother and child, are discussed to be involved in its pathogenesis or severity. Moreover, inactivating polymorphisms in the aldosterone synthase gene have been detected in preeclamptic women. Here, we used aldosterone synthase-deficient (AS(-/-)) mice to test whether the absence of aldosterone is sufficient to impair pregnancy or even to cause preeclampsia. AS(-/-) and AS(+/+) females were mated with AS(+/+) and AS(-/-) males, respectively, always generating AS(+/-) offspring. With maternal aldosterone deficiency in AS(-/-) mice, systolic blood pressure was low before and further reduced during pregnancy with no increase in proteinuria. Yet, AS(-/-) had smaller litters due to loss of fetuses as indicated by a high number of necrotic placentas with massive lymphocyte infiltrations at gestational day 18. Surviving fetuses and their placentas from AS(-/-) females were smaller. High-salt diet before and during pregnancy increased systolic blood pressure only before pregnancy in both genotypes and abolished the difference in blood pressure during late pregnancy. Litter size from AS(-/-) was slightly improved and the differences in placental and fetal weights between AS(+/+) and AS(-/-) mothers disappeared. Overall, an increased placental efficiency was observed in both groups paralleled by a normalization of elevated HIF1α levels in the AS(-/-) placentas. Our results demonstrate that aldosterone deficiency has profound adverse effects on placental function. High dietary salt intake improved placental function. In this animal model, aldosterone deficiency did not cause preeclampsia.
Resumo:
Preeclampsia is a hypertensive disorder unique to pregnancy and remains the leading cause of maternal and fetal morbidity and mortality. Despite active research, the etiology of this disease remains still an enigma. There is increasing evidence that a combination of several factors is responsible for the development of preeclampsia. In this review, we discuss the role of aldosterone in the regulation of body fluid in pregnancy and preeclampsia. Aldosterone is produced by the enzyme aldosterone synthase and competes with cortisol and progesterone for the mineralocorticoid receptor, thus affecting sodium reabsorption and maternal volume expansion. Aldosterone seems to play a pivotal role in controlling blood pressure during pregnancy and to contribute to the well-being of the mother-to-be. Novel findings in understanding the underlying causes of preeclampsia provide a rationale for future novel prophylactic and therapeutic interventions in the treatment of this pregnancy-associated disease.
Resumo:
BACKGROUND: Increased aldosterone concentrations and volume expansion of normal pregnancies are hallmarks of normal pregnancies and blunted in pre-eclampsia. Accordingly, we hypothesized an active mineralocorticoid system to protect from pre-eclampsia. METHODS: In pregnant women (normotensive n = 44; pre-eclamptic n = 48), blood pressure, urinary tetrahydro-aldosterone excretion and activating polymorphisms (SF-1 site and intron 2) of the aldosterone synthase gene (CYP11B2) were determined; 185 non-pregnant normotensive individuals served as control. Amino acid-changing polymorphisms of the DNA- and agonist-binding regions of the mineralocorticoid receptor were evaluated by RT-PCR, SSCP and sequencing. RESULTS: Urinary tetrahydro-aldosterone excretion was reduced in pre-eclampsia as compared to normal pregnancy (P < 0.05). It inversely correlated with blood pressure (r = 0.99, P < 0.04). Homozygosity for activating CYP11B2 polymorphisms was preferably present in normotensive as compared to pre-eclamptic pregnancies, identified (intron 2, P = 0.005; SF-1 site, P = 0.016). Two mutant haplotypes decreased the risk of developing pre-eclampsia (RR 0.16; CI 0.05-0.54; P < 0.001). In contrast, intron 2 wild type predisposed to pre-eclampsia (P < 0.0015). No functional mineralocorticoid receptor mutant has been observed. CONCLUSIONS: High aldosterone availability is associated with lower maternal blood pressure. In line with this observation, gain-of-function variants of the CYP11B2 reduce the risk of developing pre-eclampsia. Mutants of the mineralocorticoid receptor cannot explain the frequent syndrome of pre-eclampsia.