866 resultados para Alcohols
Resumo:
With new photocatalysts of gold nanoparticles supported on zeolite supports (Au/zeolite), oxidation of benzyl alcohol and its derivatives into the corresponding aldehydes can proceed well with a high selectivity (99%) under visible light irradiation at ambient temperature. Au/zeolite photocatalysts were characterized by UV/Vis, XPS, TEM, XRD, EDS, BET, IR, and Raman techniques. The Surface Plasmon Resonance (SPR) effect of gold nanoparticles, the adsorption capability of zeolite supports, and the molecular polarities of aromatic alcohols were demonstrated to have an essential correlation with the photocatalytic performances. In addition, the effects of light intensity, wavelength range, and the role of molecular oxygen were investigated in detail. The kinetic study indicated that the visible light irradiation required much less apparent activation energy for photooxidation compared with thermal reaction. Based on the characterization data and the photocatalytic performances, we proposed a possible photooxidation mechanism.
Resumo:
TiO2 nanofibers with different crystal phases have been discovered to be efficient catalysts for the transesterification of alcohols with dimethyl carbonate to produce corresponding methyl carbonates. Advantages of this catalytic system include excellent selectivity (>99%), general suitability to alcohols, reusability and ease of preparation and separation of fibrous catalysts. Activities of TiO2 catalysts were found to correlate with their crystal phases which results in different absorption abilities and activation energies on the catalyst surfaces. The kinetic isotope effect (KIE) investigation identified the rate-determining step, and the isotope labeling of oxygen-18 of benzyl alcohol clearly demonstrated the reaction pathway. Finally, the transesterification mechanism of alcohols with dimethyl carbonate catalyzed by TiO2 nanofibers was proposed, in which the alcohol released the proton to form benzyl alcoholic anion, and subsequently the anion attacks the carbonyl carbon of dimethyl carbonate to produce the target product of benzyl methyl carbonate.
Resumo:
We have used electronic structure calculations to investigate the 1,2-dehydration of alcohols as a model for water loss during the pyrolysis of carbohydrates found in biomass. Reaction enthalpies and energy barriers have been calculated for neat alcohols, protonated alcohols and alcohols complexed to alkali metal ions (Li + and Na +). We have estimated pre-exponential A factors in order to obtain gas phase rate constants. For neat alcohols, the barrier to 1,2-dehydration is about 67 kcal mol -1, which is consistent with the limited experimental data. Protonation and metal complexation significantly reduce this activation barrier and thus, facilitate more rapid reaction. With the addition of alkali metals, the rate of dehydration can increase by a factor of 10 8 while addition of a proton can lead to an increase of a factor of 10 23.
Resumo:
Synthesis of imines from amines and aliphatic alcohols (C1–C6) in the presence of base on supported palladium nanoparticles has been achieved for the first time. The catalytic system shows high activity and selectivity in open air at room temperature. As an example of the isostructural Ln3Sb3Co2O14 (Ln: La, Pr, Nd, Sm—Ho) series with an ordered pyrochlore structure, the La variant is prepared by a citrate complex method employing stoichiometric amounts of La(NO3)3, Co(NO3)2, and Sb tartrate together with citric acid with a metal/citrate molar ratio of 1:2
Resumo:
We find that visible light irradiation of gold–palladium alloy nanoparticles supported on photocatalytically inert ZrO2 significantly enhances their catalytic activity for oxidant-free dehydrogenation of aromatic alcohols to the corresponding aldehydes at ambient temperatures. Dehydrogenation is also the dominant process in the selective oxidation of the alcohols to the corresponding aldehydes with molecular oxygen. The alloy nanoparticles strongly absorb light and exhibit superior catalytic and photocatalytic activity when compared to either pure palladium or gold nanoparticles. Analysis with a free electron gas model for the bulk alloy structure reveals that the alloying increases the surface charge heterogeneity on the alloy particle surface, which enhances the interaction between the alcohol molecules and the metal NPs. The increased surface charge heterogeneity of the alloy particles is confirmed with density function theory applied to small alloy clusters. Optimal catalytic activity was observed with a Au : Pd molar ratio of 1 : 186, which is in good agreement with the theoretical analysis. The rate-determining step of the dehydrogenation is hydrogen abstraction. The conduction electrons of the nanoparticles are photo-excited by the incident light giving them the necessary energy to be injected into the adsorbed alcohol molecules, promoting the hydrogen abstraction. The strong chemical adsorption of alcohol molecules facilitates this electron transfer. The results show that the alloy nanoparticles efficiently couple thermal and photonic energy sources to drive the dehydrogenation. These findings provide useful insight into the design of catalysts that utilize light for various organic syntheses at ambient temperatures.
Resumo:
Selective introduction and removal of protecting groups is of great significance in organic synthesis.l The benzyl ether function is one of the most common protecting groups for alcohols. Selective oxidative removal of the 4-methoxybenzyl (MPM) ethers in the presence of benzyl ethers made the MPM moiety an alternative protecting group, and its utility in carbohydrate chemistry is well established. Several procedures have been developed for the cleavage of the 4-methoxybenzyl moiety, e.g. DDQ oxidation (eq 1),2e lectrochemical ~xidationh,~om ogeneous electron t r a n~f e rp,~ho toinduced single electron t r an~f e rb,o~ro n trichloride-dimethyl sulfide,6e tc. However, in all these methods isolation of the alcohol from the inevitable byproduct, 4-methoxybenzaldehyde [also dichlorodicyanohydroquinone (DDHQ) in the most commonly used method employing DDQI can be troublesome. Recently Wallace and Hedgetts7 discovered that acetic acid at 90 "C cleaves the aromatic MPM ethers into the corresponding phenols and 4-methoxybenzyl acetate (eq 21, whereas the aliphatic MPM ethers generated, instead of alcohols, the corresponding acetates (eq 3). Complimentary to this methodology, herein we report that sodium cyanoborohydride and boron trifluoride etherate reductively cleaves, cleanly and efficiently, the aliphatic MPM ethers to an easily separable mixture of the corresponding alcohols and 4-methylanisole
Resumo:
Interaction of methanol, ethanol, and 2-propanol with polycrystalline as well as (0001) surfaces of Zn has been investigated by photoelectron spectroscopy and vibrational energy loss spectroscopy. All the alcohols show evidence for the condensed species along with the chemisorbed species at 80 K. With increase in temperature to similar to 120 K, the condensed species desorbs, leaving the chemisorbed species which decomposes to give the alkoxy species. The alkoxy species is produced increasingly at lower temperatures as we go from methanol to 2-propanol, the 2-propoxy species occurring even at 80 K. The alkoxy species undergo C-O bond scission giving rise to a hydrocarbon species and oxygen. The C-O bond cleavage occurs at a relatively low temperature of similar to 150 K. The effect of preadsorbed oxygen is to stabilize the methoxy species and prevent C-O bond scission. On the other hand, coadsorption of oxygen with methanol favors the formation of the methoxy species and gives rise to hydrocarbon species arising from the C-O bond scission even at 80 K.
Resumo:
Selective oxidation of aliphatic alcohols under mild and base-free conditions is a challenging process for organic synthesis. Herein, we report a one-pot process for the direct oxidative esterification of aliphatic alcohols that is significantly enhanced by visible-light irradiation at ambient temperatures. The new methodology uses heterogenerous photocatalysts of gold–palladium alloy nanoparticles on a phosphate-modified hydrotalcite support and molecular oxygen as a benign oxidant. The alloy photocatalysts can absorb incident light, and the light-excited metal electrons on the surface of metal nanoparticles can activate the adsorbed reactant molecules. Tuning the light intensity and wavelength of the irradiation can remarkably change the reaction activity. Shorter wavelength light (<550 nm) drives the reaction more efficiently than light of longer wavelength (e.g., 620 nm), especially at low temperatures. The phosphate-exchanged hydrotalcite support provides sufficient basicity (and buffer) for the catalytic reactions; thus, the addition of base is not required. The photocatalysts are efficient and readily recyclable. The findings reveal the first example of using “green” oxidants and light energy to drive direct oxidative esterification of aliphatic alcohols under base-free, mild conditions.
Resumo:
Rat lung microsomes were shown to �-hydroxylate acyclic monoterpene alcohols in the presence of NADPH and O2. NADH could neither support hydroxylation efficiently nor did it show synergistic effect. The hydroxylase activity was greater in microsomes prepared from β-naphthoflavone (BNF)-treated rats than from phenobarbital (PB)-treated or control microsomal preparations. Hydroxylation was specific to the C-8 position in geraniol and has a pH optimum of 7.8. The inhibition of the hydroxylase activity by SKF-525A, CO, N-ethylmaleimide, ellipticine, α-naphthoflavone, cyt. Image and p-CMB indicated the involvement of the cyt. P-450 system. However, NaN3 stimulated the hydroxylase activity to a significant level. Rat kidney microsomes were also capable of �-hydroxylating geraniol although the activity was lower than that observed with lungs.
Resumo:
Rat lung microsomes were shown to ω-hydroxylate acyclic monoterpene alcohols in the presence of NADPH and O2. NADH could neither support hydroxylation efficiently nor did it show synergistic effect. The hydroxylase activity was greater in microsomes prepared from β-naphthoflavone (BNF)-treated rats than from phenobarbital (PB)-treated or control microsomal preparations. Hydroxylation was specific to the C-8 position in geraniol and has a pH optimum of 7.8. The inhibition of the hydroxylase activity by SKF-525A, CO, N-ethylmaleimide, ellipticine, α-naphthoflavone, cyt. Image and p-CMB indicated the involvement of the cyt. P-450 system. However, NaN3 stimulated the hydroxylase activity to a significant level. Rat kidney microsomes were also capable of ω-hydroxylating geraniol although the activity was lower than that observed with lungs.
Resumo:
This paper describes the synthesis and characterization of a novel organic polymer coating for the prevention of the growth of Pseudomonas aeruginosa on the solid surface of three-dimensional objects. Substrata were encapsulated with polyterpenol thin films prepared from terpinen-4-ol using radio frequency plasma enhanced chemical vapor deposition. Terpinen-4-ol is a constituent of tea tree oil with known antibacterial properties. The influence of deposition power on the chemical structure, surface composition, and ultimately the antibacterial inhibitory activity of the resulting polyterpenol thin films was studied using X-ray photoelectron spectroscopy (XPS), water contact angle measurement, atomic force microscopy (AFM), and 3-D interactive visualization and statistical approximation of the topographic profiles. The experimental results were consistent with those predicted by molecular simulations. The extent of bacterial attachment and extracellular polymeric substances (EPS) production was analyzed using scanning electron microscopy (SEM) and confocal scanning laser microscopy (CSLM). Polyterpenol films deposited at lower power were particularly effective against P. aeruginosa due to the preservation of original terpinen-4-ol molecules in the film structure. The proposed antimicrobial and antifouling coating can be potentially integrated into medical and other clinically relevant devices to prevent bacterial growth and to minimize bacteria-associated adverse host responses.
Resumo:
Radio frequency plasma enhanced chemical vapor deposition is currently used to fabricate a broad range of functional coatings. This work described fabrication and characterization of a novel bioactive coating, polyterpenol, for encapsulation of three-dimensional indwelling medical devices. The materials are synthesized from monoterpene alcohols under different input power conditions. The chemical composition and structure of the polyterpenol thin films were determined by Xray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) spectroscopy, contact angle measurements, and atomic force microscopy (AFM). The application of polyterpenol coating to the substrate reduced surface roughness from 1.5 to 0.4 of a nanometer, and increased the water contact angle from to 9 to 72 degrees. The extent of attachment and extracellular polysaccharide (EPS) production of two medically relevant pathogens, Staphylococcus aureus and Staphylococcus epidermis were analyzed using scanning electron microscopy (SEM) and confocal scanning laser microscopy (CSLM). Application of polyterpenol coating fabricated at 10 W significantly inhibited attachment and growth of both pathogens compared to unmodified substrates, whilst addition of 50 W films resulted in an increased attachment, proliferation and EPS production by both types of bacteria when compared to unmodified surface. Marked dissimilarity in bacterial response between two coatings was attributed to changes in surface chemistry, nano-architecture and surface energy of polymer thin films deposited under different input power conditions.
Resumo:
After more than twenty years of basic and applied research, the use of nanotechnology in the design and manufacture of nanoscale materials is rapidly increasing, particularly in commercial applications that span from electronics across renewable energy areas, and biomedical devices. Novel polymers are attracting significant attention for they promise to provide a low−cost high−performance alternative to existing materials. Furthermore, these polymers have the potential to overcome limitations imposed by currently available materials thus enabling the development of new technologies and applications that are currently beyond our reach. This work focuses on the development of a range of new low−cost environmentally−friendly polymer materials for applications in areas of organic (flexible) electronics, optics, and biomaterials. The choice of the monomer reflects the environmentally−conscious focus of this project. Terpinen−4−ol is a major constituent of Australian grown Melaleuca alternifolia (tea tree) oil, attributed with the oil's antimicrobial and anti−inflammatory properties. Plasma polymerisation was chosen as a deposition technique for it requires minimal use of harmful chemicals and produces no hazardous by−products. Polymer thin films were fabricated under varied process conditions to attain materials with distinct physico−chemical, optoelectrical, biological and degradation characteristics. The resultant materials, named polyterpenol, were extensively characterised using a number of well−accepted and novel techniques, and their fundamental properties were defined. Polyterpenol films were demonstrated to be hydrocarbon rich, with variable content of oxygen moieties, primarily in the form of hydroxyl and carboxyl functionalities. The level of preservation of original monomer functionality was shown to be strongly dependent on the deposition energy, with higher applied power increasing the molecular fragmentation and substrate temperature. Polyterpenol water contact angle contact angle increased from 62.7° for the 10 W samples to 76.3° for the films deposited at 100 W. Polymers were determined to resist solubilisation by water, due to the extensive intermolecular and intramolecular hydrogen bonds present, and other solvents commonly employed in electronics and biomedical processing. Independent of deposition power, the surface topography of the polymers was shown to be smooth (Rq <0.5 nm), uniform and defect free. Hardness of polyterpenol coatings increased from 0.33 GPa for 10 W to 0.51 GPa for 100 W (at 500 μN load). Coatings deposited at higher input RF powers showed less mechanical deformation during nanoscratch testing, with no considerable damage, cracking or delamination observed. Independent of the substrate, the quality of film adhesion improved with RF power, suggesting these coatings are likely to be more stable and less susceptible to wear. Independent of fabrication conditions, polyterpenol thin films were optically transparent, with refractive index approximating that of glass. Refractive index increased slightly with deposition power, from 1.54 (10 W) to 1.56 (100 W) at 500 nm. The optical band gap values declined with increasing power, from 2.95 eV to 2.64 eV, placing the material within the range for semiconductors. Introduction of iodine impurity reduced the band gap of polyterpenol, from 2.8 eV to 1.64 eV, by extending the density of states more into the visible region of the electromagnetic spectrum. Doping decreased the transparency and increased the refractive index from 1.54 to 1.70 (at 500 nm). At optical frequencies, the real part of permittivity (k) was determined to be between 2.34 and 2.65, indicating a potential low-k material. These permittivity values were confirmed at microwave frequencies, where permittivity increased with input RF energy – from 2.32 to 2.53 (at 10 GHz ) and from 2.65 to 2.83 (at 20 GHz). At low frequencies, the dielectric constant was determined from current−voltage characteristics of Al−polyterpenol−Al devices. At frequencies below 100 kHz, the dielectric constant varied with RF power, from 3.86 to 4.42 at 1 kHz. For all samples, the resistivity was in order of 10⁸−10⁹ _m (at 6 V), confirming the insulating nature of polyterpenol material. In situ iodine doping was demonstrated to increase the conductivity of polyterpenol, from 5.05 × 10⁻⁸ S/cm to 1.20 × 10⁻⁶ S/cm (at 20 V). Exposed to ambient conditions over extended period of time, polyterpenol thin films were demonstrated to be optically, physically and chemically stable. The bulk of ageing occurred within first 150 h after deposition and was attributed to oxidation and volumetric relaxation. Thermal ageing studies indicated thermal stability increased for the films manufactured at higher RF powers, with degradation onset temperature associated with weight loss shifting from 150 ºC to 205 ºC for 10 W and 100 W polyterpenol, respectively. Annealing the films to 405 °C resulted in full dissociation of the polymer, with minimal residue. Given the outcomes of the fundamental characterisation, a number of potential applications for polyterpenol have been identified. Flexibility, tunable permittivity and loss tangent properties of polyterpenol suggest the material can be used as an insulating layer in plastic electronics. Implementation of polyterpenol as a surface modification of the gate insulator in pentacene-based Field Effect Transistor resulted in significant improvements, shifting the threshold voltage from + 20 V to –3 V, enhancing the effective mobility from 0.012 to 0.021 cm²/Vs, and improving the switching property of the device from 10⁷ to 10⁴. Polyterpenol was demonstrated to have a hole transport electron blocking property, with potential applications in many organic devices, such as organic light emitting diodes. Encapsulation of biomedical devices is also proposed, given that under favourable conditions, the original chemical and biological functionality of terpinen−4−ol molecule can be preserved. Films deposited at low RF power were shown to successfully prevent adhesion and retention of several important human pathogens, including P. aeruginosa, S. aureus, and S. epidermidis, whereas films deposited at higher RF power promoted bacterial cell adhesion and biofilm formation. Preliminary investigations into in vitro biocompatibility of polyterpenol demonstrated the coating to be non−toxic for several types of eukaryotic cells, including Balb/c mice macrophage and human monocyte type (HTP−1 non-adherent) cells. Applied to magnesium substrates, polyterpenol encapsulating layer significantly slowed down in vitro biodegradation of the metal, thus increasing the viability and growth of HTP−1 cells. Recently, applied to varied nanostructured titanium surfaces, polyterpenol thin films successfully reduced attachment, growth, and viability of P. aeruginosa and S. aureus.
Resumo:
Cell-free preparations of rat sciatic nerve were found to catalyze the reduction of fatty acid to alcohol in the presence of NADPH as reducing cofactor. The reductase was membrane-bound and associated primarily with the microsomal fraction. When fatty acid was the substrate, ATP, coenzyme A (CoA), and Mg2+ were required, indicating the formation of acyl CoA prior to reduction. When acyl CoA was used as substrate, the presence of albumin was required to inhibit acyl CoA hydro-lase activity. Fatty acid reductase activity was highest with palmitic and stearic acids, and somewhat lower with lauric and myristic acids. It was inhibited by sulfhydryl reagents, indicating the participation of thiol groups in the reduction. Only traces of long-chain aldehyde could be detected or trapped as semicarbazone. Fatty acid reductase activity in rat sciatic nerve was highest between the second and tenth days after birth and decreased substantially thereafter. Microsomal preparations of sciatic nerve from 10-day-old rats exhibited about four times higher fatty acid reductase activity than brain or spinal cord microsomes from the same animals. Wallerian degeneration and regeneration of adult rat sciatic nerve resulted in enhanced fatty acid reductase activity, which reached a maximum at about 12 days after crush injury.