944 resultados para Al-MCM-41. Thermogravimetry. Model free kinetics. Apparent activation energy
Resumo:
The mesoporous nanostructured materials have been studied for application in the oil industry, in particular Al-MCM-41, due to the surface area around 800 to 1.000 m2 g-1 and, pore diameters ranging from 2 to 10 nm, suitable for catalysis to large molecules such as heavy oil. The MCM-41 has been synthesized by hydrothermal method, on which aluminum was added, in the ratio Si/Al equal to 50, to increase the generation of active acid sites in the nanotubes. The catalyst was characterized by X-ray diffraction (XRD), surface area by the BET method and, the average pore volume BJH method using the N2 adsorption, absorption spectroscopy in the infrared Fourier Transform (FT-IR) and determination of surface acidity with application of a probe molecule - n-butylamine. The catalyst showed well-defined structural properties and consistent with the literature. The overall objective was to test the Al-MCM-41 as catalyst and thermogravimetric perform tests, using two samples of heavy oil with API º equal to 14.0 and 18.5. Assays were performed using a temperature range of 30-900 ° C and heating ratios (β) ranging from 5, 10 and 20 °C min-1.The aim was to verify the thermogravimetric profiles of these oils when subjected to the action of the catalyst Al- MCM-41. Therefore, the percentage ranged catalyst applied 1, 3, 5, 10 and 20 wt%, and from the TG data were applied two different kinetic models: Ozawa-Flynn-Wall (OFW) and Kissinger-Akahrira-Sunose (KAS).The apparent activation energies found for both models had similar values and were lower for the second event of mass loss known as cracking zone, indicating a more effective performance of Al-MCM-41 in that area. Furthermore, there was a more pronounced reduction in the value of activation energy for between 10 and 20% by weight of the oil-catalyst mixture. It was concluded that the Al-MCM-41 catalyst has applicability in heavy oils to reduce the apparent activation energy of a catalyst-oil system, and the best result with 20% by weight of Al-MCM-41
Production of biodiesel by esterification of palmitic acid over mesoporous aluminosilicate Al-MCM-41
Resumo:
Biodiesel has been obtained by esterification of palmitic acid with methanol, ethanol and isopropanol in the presence of Al-MCM-41 mesoporous molecular sieves with Si/Al ratios of 8.16 and 32. The catalytic acids were synthesized at room temperature and characterized by atomic absorption spectrometry (AAS), thermal analysis (TG/DTA), X-ray diffraction (XRD), nitrogen absorption (BET/BJH), infrared spectroscopy (IR), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The reaction was carried out at 130 degrees C whilst stirring at 500 rpm, with an alcohol/acid molar ratio of 60 and 0.6 wt% catalyst for 2 h. The alcohol reactivity follows the order methanol > ethanol > isopropanol. The catalyst Al-MCM-41 with ratio Si/Al = 8 produced the largest conversion values for the alcohols studied. The data followed a rather satisfactory approximation to first-order kinetics. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The effect of two zeolites, HUSY, NaY and a mesoporous synthesized Al-MCM-41 material on the smoke composition of ten commercial cigarettes brands has been studied. Cigarettes were prepared by mixing the tobacco with the three powdered materials, and the smoke obtained under the ISO conditions was analyzed. Up to 32 compounds were identified and quantified in the gas fraction and 80 in the total particulate matter (TPM) condensed in the cigarettes filters and in the traps located after the mouth end of the cigarettes. Al-MCM-41 is by far the best additive, providing the highest reductions of the yield for most compounds and brands analyzed. A positive correlation was observed among the TPM and nicotine yields with the reduction obtained in nicotine, CO, and most compounds with the three additives. The amount of ashes in additive free basis increases due to the coke deposited on the solids, especially with Al-MCM-41. Nicotine is reduced with Al-MCM-41 by an average of 34.4% for the brands studied (49.5% for the brand where the major reduction was obtained and 18.5 for the brand behaving the worst). CO is reduced by an average of 18.6% (ranging from 10.3 to 35.2% in the different brands).
Resumo:
Superior enantioselectivity in the dihydroxylation of trans-stilbene catalysed by anchored triosmium carbonyl species without using a chiral modifier is observed inside sterically congested MCM-41 channels; this effect is more pronounced through the introduction of surface Al sites into the silicate.
Resumo:
Aiming to reduce and reuse waste oil from oily sludge generated in large volumes by the oil industry, types of nanostructured materials Al-MCM-41 and Al-SBA-15, with ratios of Si / Al = 50, were synthesized , and calcined solids used as catalysts in the degradation of oily sludge thermocatalytic oil from oilfield Canto do Amaro, in the state of Rio Grande do Norte. Samples of nanostructured materials were characterized by thermogravimetric analysis (TG / DTG), X-ray diffraction (XRD), scanning electron microscopy (SEM), absorption spectroscopy in the infrared Fourier transform (FT-IR) and adsorption nitrogen (BET). The characterization showed that the synthesized materials resulted in a catalyst nanostructure, and ordered pore diameter and surface area according to existing literature. The oily sludge sample was characterized by determining the API gravity and sulfur content and SARA analysis (saturates, aromatics, resins and asphaltenes). The results showed a material equivalent to the average oil with API gravity of 26.1, a low sulfur content and considerable amount of resins and asphaltenes, presented above in the literature. The thermal and catalytic degradation of the oily sludge oil was performed from room temperature to 870 ° C in the ratios of heating of 5, 10 and 20 ° C min-1. The curves generated by TG / DTG showed a more accelerated degradation of oily sludge when it introduced the nanostructured materials. These results were confirmed by activation energy calculated by the method of Flynn-Wall, in the presence of catalysts reduced energy, in particular in the range of cracking, showing the process efficiency, mainly for extraction of lightweight materials of composition of oily sludge, such as diesel and gasoline
Resumo:
Biofuels and their blends with fossil fuel are important energy resources, which production and application have been largely increased internationally. This study focus on the development of a correlation between apparent activation energy (Ea) and NOx emission of the thermal decomposition of three pure fuels: farnasane (renewable diesel from sugar cane), biodiesel and fossil diesel and their blends. Apparent Activation energy was determined by using thermogravimetry and Model-Free Kinetics. NOx emission was obtained from the European Stationary Cycle (ESC) with OM 926LA CONAMA P7/Euro 5 engine. Results showed that there is a linear correlation between apparent activation energy and NOx emission with R2 of 0,9667 considering pure fuels and their blends which is given as: NOx = 2,2514Ea - 96,309. The average absolute error of this correlation is 2.96% with respect to the measured NOx value. The main advantage of this correlation is its capability to predict NOx emission when either a new pure fuel or a blend of fuels is proposed to use in enginees.
Resumo:
This work describes the synthesis and aplication of homogeneous and heterogenized iron catalysts in the alkylation reaction of toluene with propene, empolying experimental design. The homogenous complex was obtained trough the synthesis of the organic ligand folowed by the complexation of the iron(II) chloride. As to the heterogenized complexes, first were synthetized the inorganic supports (SBA-15, MCM-41 and Al-MCM-41). Then, it was synthetized the ligand again, that through funcionalization with chloropropyltrimethoxysilane (CPTMS), was anchored on the support previously calcinated. To these anchored ligands, was complexed the iron(II) chloride, previously solubilizated in tetrahydrofuran (THF). The organic ligand characterization was accomplished trough nuclear magnetic resonance (NMR) and Infrared spectroscopy (IV). The supports were characterized with x-ray diffraction (DRX), texture analysis with nitrogen adsorption/desorption (before and after the anchoring), termogravimetric analysis (TG) and infrared (IV). The metalic content was quantified trough the atomic absorption spectrophotometry (AAS). The complexes were tested in catalytic reactions emolying ethylaluminium sesquichloride (EASC) as co-catalyst in steel reactor, under mecanic stirring. The reaction conditions ranged from 4 to 36 ◦C, with many aluminum/iron ratios. The catalysts were actives in homogeneous and heterogenized ways. The homogenous catalytic complex showed a maximum turnover frequency (TOF) of 8.63 ×103 · h −1 , while, in some conditions, the anchored complexes showed better results, with TOF of until 8.08 ×103 · h −1 . Aditionally, it was possible to determine an equation, to the homogenous catalyst, that describes the product quantity in function of reacional temperature and aluminum/iron ratio.
Resumo:
Aiming to reduce and reuse waste oil from oily sludge generated in large volumes by the oil industry, types of nanostructured materials Al-MCM-41 and Al-SBA-15, with ratios of Si / Al = 50, were synthesized , and calcined solids used as catalysts in the degradation of oily sludge thermocatalytic oil from oilfield Canto do Amaro, in the state of Rio Grande do Norte. Samples of nanostructured materials were characterized by thermogravimetric analysis (TG / DTG), X-ray diffraction (XRD), scanning electron microscopy (SEM), absorption spectroscopy in the infrared Fourier transform (FT-IR) and adsorption nitrogen (BET). The characterization showed that the synthesized materials resulted in a catalyst nanostructure, and ordered pore diameter and surface area according to existing literature. The oily sludge sample was characterized by determining the API gravity and sulfur content and SARA analysis (saturates, aromatics, resins and asphaltenes). The results showed a material equivalent to the average oil with API gravity of 26.1, a low sulfur content and considerable amount of resins and asphaltenes, presented above in the literature. The thermal and catalytic degradation of the oily sludge oil was performed from room temperature to 870 ° C in the ratios of heating of 5, 10 and 20 ° C min-1. The curves generated by TG / DTG showed a more accelerated degradation of oily sludge when it introduced the nanostructured materials. These results were confirmed by activation energy calculated by the method of Flynn-Wall, in the presence of catalysts reduced energy, in particular in the range of cracking, showing the process efficiency, mainly for extraction of lightweight materials of composition of oily sludge, such as diesel and gasoline
Resumo:
In this paper, the organophilic property of MCM-41 was studied and compared with hydrophobic silicalite-l using adsorption and temperature-programmed desorption (TPD) methods. The surface heterogeneity of MCM-41 was evaluated in terms of activation energy for desorption (E-d) and isosteric heat of adsorption (q(st)). Results show that MCM-41 has a higher affinity to polar organic compounds than to non-polar organics while silicalite-l has a higher affinity to non-polar organic compounds than to polar organics. This organophilic behaviour of MCM-41 is attributed to its surface heterogeneity. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The reactivity of chemically isolated lignocellulosic blocks, namely, α-cellulose, holocellulose, and lignin, has been rationalized on the basis of the dependence of the effective activation energy (Eα) upon conversion (α) determined via the popular isoconversional kinetic analysis, Friedman’s method. First of all, a detailed procedure for the thermogravimetric data preparation, kinetic calculation, and uncertainty estimation was implemented. Resulting Eα dependencies obtained for the slow pyrolysis of the extractive-free Eucalyptus grandis isolated α-cellulose and holocellulose remained constant for 0.05 < α < 0.80 and equal to 173 ± 10, 208 ± 11, and 197 ± 118 kJ/mol, thus confirming the single-step nature of pyrolysis. On the other hand, large and significant variations in Eα with α from 174 ± 10 to 322 ± 11 kJ/mol in the region of 0.05 and 0.79 were obtained for the Klason lignin and reported for the first time. The non-monotonic nature of weight loss at low and high conversions had a direct consequence on the confidence levels of Eα. The new experimental and calculation guidelines applied led to more accurate estimates of Eα values than those reported earlier. The increasing Eα dependency trend confirms that lignin is converted into a thermally more stable carbonaceous material.
Resumo:
A One-Dimensional Time to Explosion (ODTX) apparatus has been used to study the times to explosion of a number of compositions based on RDX and HMX over a range of contact temperatures. The times to explosion at any given temperature tend to increase from RDX to HMX and with the proportion of HMX in the composition. Thermal ignition theory has been applied to time to explosion data to calculate kinetic parameters. The apparent activation energy for all of the compositions lay between 127 kJ mol−1 and 146 kJ mol−1. There were big differences in the pre-exponential factor and this controlled the time to explosion rather than the activation energy for the process.
Resumo:
The electrocatalytic oxidation of 1-propanol was investigated on platinum electrodes modified by submonolayers of Pb and Sn in acid media. An increase of oxidation rates observed for both Pb and Sn, and the influence of theta values was investigated. The values of the apparent activation energy evaluated from the Arrhenius plots concerning the electrochemical oxidation of 1-propanol on modified platinzed platinum electrodes, reveal a significant decrease in the presence of upd Sn and Ph adatoms. A decrease from 56 to 26 U mol(-1) in the presence of Sn. and from 78 to 25 U mol(-1) for Ph adatoms are some illustrative values which reflect the promoting effect of the upd adatoms.
Resumo:
The mesoporous molecular sieves of the MCM-41 and FeMCM-41 type are considered promissory as support for metals used as catalysts in oil-based materials refine processes and as adsorbents for environmental protection proposes. In this work MCM-41 and FeMCM41 were synthesized using rice husk ash - RHA as alternative to the conventional silica source. Hydrothermal synthesis was the method chosen to prepare the materials. Pre-defined synthesis parameters were 100°C for 168 hours, later the precursor was calcinated at 550°C for 2 hours under nitrogen and air flow. The sieves containing different proportions of iron were produced by two routes: introduction of iron salt direct synthesis; and a modification post synthesis consisting in iron salt 1 % and 5% impregnation in the material followed by thermal decomposition. The molecular sieves were characterized by X ray diffraction XRD, Fourier transform infrared spectroscopy FT-IR, X ray fluorescence spectroscopy XFR, scanning electronic microscopy SEM, specific surface area using the BET method, Termogravimetry TG. The kinetic model of Flynn Wall was used with the aim of determining the apparent activation energy of the surfactant remove (CTMABr) in the MCM- 41 porous. The analysis made possible the morphology characterization, identifying the presence of hexagonal structure typical for mesoporous materials, as well as observation of the MCM41 and iron of characteristic bands.
Resumo:
Emissions of CO2 in the atmosphere have increased successively by various mechanisms caused by human action, especially as fossil fuel combustion and industrial chemical processes. This leads to the increase in average temperature in the atmosphere, which we call global warming. The search for new technologies to minimize environmental impacts arising from this phenomenon has been investigated. The capture of CO2 is one of the alternatives that can help reduce emis ions of greenhouse gases. The CO2 can be captured through the process of selective adsorption using adsorbents for this purpose. Were synthesized by hydrothermal method, materials of the type MCM-41 and Al-MCM-41 in the molar ratio Si / Al equal to 50. The synthesis of gels were prepared from a source of silicon, sodium, water and aluminum in the case of Al-MCM-41. The period of synthesis of the materials was 5 days in autoclave at 100°C. After that time materials were filtered, washed and dried in greenhouse at 100 º C for 4 hours and then calcined at 450 º C. Then the calcined material was functionalized with the Di-isopropylamine (DIPA) by the method of wet impregnation. We used 0.5 g of material mesopores to 3.5 mL of DIPA. The materials were functionalized in a closed container for 24 hours, and after this period were dried at brackground temperature for 2 hours. Were subsequently subjected to heat treatment at 250°C for 1 hour. These materials were used for the adsorption of CO2 and were characterized by XRD, FT-IR, BET / BJH, SEM, EDX and TG / DTG. Tests of adsorption of CO2 was carried out under the following conditions: 100 mg of adsorbent, temperature of 75°C under flow of 100 mL/min of CO2 for 2 hours. The desorption of CO2 was carried out by thermogravimetry from ambient temperature to 900ºC under flow of 25 mL min of He and a ratio of 10ºC/min. The difratogramas X-ray for the synthesized samples showed the characteristic peaks of MCM-41, showing that the structure of it was obtained. For samples functionalized there was a decrease of the intensities of these peaks, with a consequent reduction in the structural ordering of the material. However, the structure was preserved mesopores. The adsorption tests showed that the functionalized MCM-41 is presented as a material promising adsorbent, for CO2 capture, with a loss of mass on the desorption CO2 of 7,52%, while that in Al-MCM- 41 functionalized showed no such loss
Resumo:
In present work, mesoporous materials of the M41S family were synthesized, which were discovered in the early 90s by researchers from Mobil Oil Corporation, thus allowing new perspectives in the field of catalysis. One of the most important members of this family is the MCM-41, which has a hexagonal array of mesopores with pore diameters ranging from 2 to 10 nm and a high surface area, enabling it to become very promising for the use as a catalyst in the refining of oil in the catalytic cracking process, since the mesopores facilitate the access of large hydrocarbon molecules, thereby increasing the production of light products, that are in high demand in the market. The addition of aluminum in the structure of MCM-41 increases the acidity of the material, making it more beneficial for application in the petrochemical industry. The mesoporous materials MCM-41 and Al-MCM-41 (ratio Si / Al = 50) were synthesized through the hydrothermal method, starting with silica gel, NaOH and distilled water. CTMABr was used as template, for structural guiding. In Al-MCM-41 the same reactants were used, with the adding of pseudoboehmite (as a source of aluminum) in the synthesis gel. The syntheses were carried out over a period of four days with a daily adjustment of pH. The optimum conditions of calcination for the removal of the organic template (CTMABr) were discovered through TG / DTG and also through analysis by XRD, FTIR and Nitrogen Adsorption. It was found that both the method of hydrothermal synthesis and calcination conditions of the studies based on TG were promising for the production of mesoporous materials with a high degree of hexagonal array. The acidic properties of the materials were determined by desorption of n-butylamine via thermogravimetry. One proved that the addition of aluminum in the structure of MCM-41 promoted an increase in the acidity of the catalyst. To check the catalytic activity of these materials, a sample of Atmospheric Residue (RAT) that is derived from atmospheric distillation of oil from the Pole of Guamaré- RN was used. This sample was previously characterized by various techniques such as Thermogravimetry, FTIR and XRF, where through thermal analysis of a comparative study between the thermal degradation of the RAT, the RAT pyrolysis + MCM-41 and RAT + Al- MCM-41. It was found that the Al-MCM-41 was most satisfactory in the promotion of a catalytic effect on the pyrolysis of the RAT, as the cracking of heavy products in the waste occurred at temperatures lower than those observed for the pyrolysis with MCM-41, and thereby also decreasing the energy of activation for the process and increasing the rates of conversion of residue into lighter products