822 resultados para Aimed Movement
Resumo:
The duration of movements made to intercept moving targets decreases and movement speed increases when interception requires greater temporal precision. Changes in target size and target speed can have the same effect on required temporal precision, but the response to these changes differs: changes in target speed elicit larger changes in response speed. A possible explanation is that people attempt to strike the target in a central zone that does not vary much with variation in physical target size: the effective size of the target is relatively constant over changes in physical size. Three experiments are reported that test this idea. Participants performed two tasks: (1) strike a moving target with a bat moved perpendicular to the path of the target; (2) press on a force transducer when the target was in a location where it could be struck by the bat. Target speed was varied and target size held constant in experiment 1. Target speed and size were co-varied in experiment 2, keeping the required temporal precision constant. Target size was varied and target speed held constant in experiment 3 to give the same temporal precision as experiment 1. Duration of hitting movements decreased and maximum movement speed increased with increases in target speed and/or temporal precision requirements in all experiments. The effects were largest in experiment 1 and smallest in experiment 3. Analysis of a measure of effective target size (standard deviation of strike locations on the target) failed to support the hypothesis that performance differences could be explained in terms of effective size rather than actual physical size. In the pressing task, participants produced greater peak forces and shorter force pulses when the temporal precision required was greater, showing that the response to increasing temporal precision generalizes to different responses. It is concluded that target size and target speed have independent effects on performance.
Resumo:
Previous work has shown that amplitude and direction are two independently controlled parameters of aimed arm movements, and performance, therefore, suffers when they must be decomposed into Cartesian coordinates. We now compare decomposition into different coordinate systems. Subjects pointed at visual targets in 2-D with a cursor, using a two-axis joystick or two single-axis joysticks. In the latter case, joystick axes were aligned with the subjects’ body axes, were rotated by –45°, or were oblique (i.e., one axis was in an egocentric frame and the other was rotated by –45°). Cursor direction always corresponded to joystick direction. We found that compared with the two-axis joystick, responses with single-axis joysticks were slower and less accurate when the axes were oriented egocentrically; the deficit was even more pronounced when the axes were rotated and was most pronounced when they were oblique. This confirms that decomposition of motor commands is computationally demanding and documents that this demand is lowest for egocentric, higher for rotated, and highest for oblique coordinates. We conclude that most current vehicles use computationally demanding man–machine interfaces.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The present study aimed at reporting a clinical and surgical case of bilateral coronoidectomy, using an intraoral approach. The patient is a 26-year-old man, who sought attendance complaining of a gradual reduction of his oral opening in the past 3 years; however, he had an aggravation in the last 2 months. After clinical examination and imaging evaluation, the diagnosis of coronoid process hyperplasia was confirmed, and the surgical treatment was proposed. Under general anesthesia, with nasotracheal intubation guided by a nasofiberendoscope, using an intraoral approach, the bilateral coronoidectomy was performed. In the immediate postoperative period, an increase of the buccal opening measured 29 mm, representing an enhancement of 11 mm, and in the 30th postoperative day, it measured 31.12 mm. During the clinical follow-up period, a reestablishment of the mandibular movements was observed. Therefore, coronoidectomy by an intraoral approach and the physiotherapy performed in the postoperative period were efficient procedures.
Resumo:
Effects of strength and power training on neuromuscular adaptations and jumping movement pattern and performance. J Strength Cond Res 26(12): 3335-3344, 2012-This study aimed at comparing the effects of strength and power training (ST and PT) regimens on neuromuscular adaptations and changes on vertical jump performance, kinetics, and kinematics parameters. Forty physically active men (178.2 +/- 7.0 cm; 75.1 +/- 8.6 kg; 23.6 +/- 3.5 years) with at least 2 years of ST experience were assigned to an ST (n = 14), a PT (n = 14), or a control group (C; n = 12). The training programs were performed during 8 weeks, 3 times per week. Dynamic and isometric maximum strength, cross-sectional area, and muscle activation were assessed before and after the experimental period. Squat jump (SJ) and countermovement jump (CMJ) performance, kinetics, and kinematics parameters were also assessed. Dynamic maximum strength increased similarly (p < 0.05) for the ST (22.8%) and PT (16.6%) groups. The maximum voluntary isometric contraction increased for the ST and PT groups (p < 0.05) in the posttraining assessments. There was a main time effect for muscle fiber cross-sectional area (p < 0.05), but there were no changes in muscle activation. The SJ height increased, after ST and PT, because of a faster concentric phase and a higher rate of force development (p < 0.05). The CMJ height increased only after PT (p < 0.05), but there were no significant changes in its kinetics and kinematics parameters. In conclusion, neuromuscular adaptations were similar between the training groups. The PT seemed more effective than the ST in increasing jumping performance, but neither the ST nor the PT was able to affect the SJ and the CMJ movement pattern (e.g., timing and sequencing of joint extension initiation).
Resumo:
This study aimed at analyzing the relationship between slow- and fast-alpha asymmetry within frontal cortex and the planning, execution and voluntary control of saccadic eye movements (SEM), and quantitative electroencephalography (qEEG) was recorded using a 20-channel EEG system in 12 healthy participants performing a fixed (i.e., memory-driven) and a random SEM (i.e., stimulus-driven) condition. We find main effects for SEM condition in slow- and fast-alpha asymmetry at electrodes F3-F4, which are located over premotor cortex, specifically a negative asymmetry between conditions. When analyzing electrodes F7-F8, which are located over prefrontal cortex, we found a main effect for condition in slow-alpha asymmetry, particularly a positive asymmetry between conditions. In conclusion, the present approach supports the association of slow- and fast-alpha bands with the planning and preparation of SEM, and the specific role of these sub-bands for both, the attention network and the coordination and integration of sensory information with a (oculo)-motor response. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Introduction: The saccadic paradigm has been used to investigate specific cortical networks involving attention. The behavioral and electrophysiological investigations of the SEM contribute significantly to the understanding of attentive patterns presented of neurological and psychiatric disorders and sports performance. Objective: The current study aimed to investigate absolute alpha power changes in sensorimotor brain regions and the frontal eye fields during the execution of a saccadic task. Methods: Twelve healthy volunteers (mean age: 26.25; SD: +/- 4.13) performed a saccadic task while the electroencephalographic signal was simultaneously recorded for the cerebral cortex electrodes. The participants were instructed to follow the LEDs with their eyes, being submitted to two different task conditions: a fixed pattern versus a random pattern. Results: We found a moment main effect for the C3, C4, F3 and F4 electrodes and a condition main effect for the F3 electrode. We also found interaction between factor conditions and frontal electrodes. Conclusions: We conclude that absolute alpha power in the left frontal cortex discriminates the execution of the two stimulus presentation patterns during SEM. (C) 2012 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Activity and behavior patterns are important components of a given species ecological strategy, as they have profound implications for its survival and reproduction. Here, we studied the activities, movements and secretive behavior of the thin-spined porcupine Chaetomys subspinosus (Rodentia: Erethizontidae), a threatened arboreal folivore in the Brazilian Atlantic rainforest. We aimed to ascertain the behavioral strategies used by this species as well as its responses to seasonal and daily climatic changes. Four radio-collared individuals were followed continuously for 72-h in the summer and winter, as well as during 146 half-night sessions conducted from April 2005 to September 2006 in forest remnants in southern Bahia. The thin-spined porcupines were nocturnally active (17:30-05:40 h), with peaks in activity and movement from 19:00 to 20:00 h and 03:00 to 04:00 h. Animals followed a circadian rhythm of activity during both the summer and winter. During the diel cycle, porcupines spent 74% of their time resting, 14% feeding, 11% traveling and 2% performing other activities. Distance traveled during the diel cycle averaged 277.5 +/- 117.9 m sd. The mean movement rate during the night was 21.6 +/- 30.1 m/h sd. No significant changes in activity budget or daily distance traveled were observed between seasons, most likely in response to the low fluctuations in climatic conditions and food availability throughout the year in the study region. However, rainfall reduced the time that the animals spent on feeding activities and explained day-to-day differences in activity budgets. We also provide details about intraspecific interactions and defecation behavior. Our observations confirmed that thin-spined porcupines, similar to other folivorous species, present low activity levels and short daily movements, and have adopted various cryptic habits, such as nocturnality, a solitary lifestyle, the tendency to leave offspring alone most of the time and defecation in concealed latrines.
Resumo:
Bone remodeling is affected by mechanical loading and inflammatory mediators, including chemokines. The chemokine (C–C motif) ligand 3 (CCL3) is involved in bone remodeling by binding to C–C chemokine receptors 1 and 5 (CCR1 and CCR5) expressed on osteoclasts and osteoblasts. Our group has previously demonstrated that CCR5 down-regulates mechanical loading-induced bone resorption. Thus, the present study aimed to investigate the role of CCR1 and CCL3 in bone remodeling induced by mechanical loading during orthodontic tooth movement in mice. Our results showed that bone remodeling was significantly decreased in CCL3−/− and CCR1−/− mice and in animals treated with Met-RANTES (an antagonist of CCR5 and CCR1). mRNA levels of receptor activator of nuclear factor kappa-B (RANK), its ligand RANKL, tumor necrosis factor alpha (TNF-α) and RANKL/osteoprotegerin (OPG) ratio were diminished in the periodontium of CCL3−/− mice and in the group treated with Met-RANTES. Met-RANTES treatment also reduced the levels of cathepsin K and metalloproteinase 13 (MMP13). The expression of the osteoblast markers runt-related transcription factor 2 (RUNX2) and periostin was decreased, while osteocalcin (OCN) was augmented in CCL3−/− and Met-RANTES-treated mice. Altogether, these findings show that CCR1 is pivotal for bone remodeling induced by mechanical loading during orthodontic tooth movement and these actions depend, at least in part, on CCL3.
Resumo:
Mouse molars undergo distal movement, during which new bone is formed at the mesial side of the tooth root whereas the preexisting bone is resorbed at the distal side of the root. However, there is little detailed information available regarding which of the bones that surround the tooth root are involved in physiological tooth movement. In the present study, we therefore aimed to investigate the precise morphological differences of the alveolar bone between the bone formation side of the tooth root, using routine histological procedures including silver impregnation, as well as by immunohistochemical analysis of alkaline phosphatase and tartrate-resistant acid phosphatase activity, and immunohistochemical analysis of the expression of the osteocyte markers dentin matrix protein 1, sclerostin, and fibroblast growth factor 23. Histochemical analysis indicated that bone formation by osteoblasts and bone resorption by osteoclasts occurred at the bone formation side and the bone resorption side, respectively. Osteocyte marker immunoreactivity of osteocytes at the surface of the bone close to the periodontal ligament differed at the bone formation and bone resorption sides. We also showed different specific features of osteocytic lacunar canalicular systems at the bone formation and bone resorption sides by using silver staining. This study suggests that the alveolar bone is different in the osteocyte nature between the bone formation side and the bone resorption side due to physiological distal movement of the mouse molar.
Resumo:
Abstract: Near-infrared spectroscopy (NIRS) enables the non-invasive measurement of changes in hemodynamics and oxygenation in tissue. Changes in light-coupling due to movement of the subject can cause movement artifacts (MAs) in the recorded signals. Several methods have been developed so far that facilitate the detection and reduction of MAs in the data. However, due to fixed parameter values (e.g., global threshold) none of these methods are perfectly suitable for long-term (i.e., hours) recordings or were not time-effective when applied to large datasets. We aimed to overcome these limitations by automation, i.e., data adaptive thresholding specifically designed for long-term measurements, and by introducing a stable long-term signal reconstruction. Our new technique (“acceleration-based movement artifact reduction algorithm”, AMARA) is based on combining two methods: the “movement artifact reduction algorithm” (MARA, Scholkmann et al. Phys. Meas. 2010, 31, 649–662), and the “accelerometer-based motion artifact removal” (ABAMAR, Virtanen et al. J. Biomed. Opt. 2011, 16, 087005). We describe AMARA in detail and report about successful validation of the algorithm using empirical NIRS data, measured over the prefrontal cortex in adolescents during sleep. In addition, we compared the performance of AMARA to that of MARA and ABAMAR based on validation data.
Resumo:
BACKGROUND: Co-speech gestures are omnipresent and a crucial element of human interaction by facilitating language comprehension. However, it is unclear whether gestures also support language comprehension in aphasic patients. Using visual exploration behavior analysis, the present study aimed to investigate the influence of congruence between speech and co-speech gestures on comprehension in terms of accuracy in a decision task. METHOD: Twenty aphasic patients and 30 healthy controls watched videos in which speech was either combined with meaningless (baseline condition), congruent, or incongruent gestures. Comprehension was assessed with a decision task, while remote eye-tracking allowed analysis of visual exploration. RESULTS: In aphasic patients, the incongruent condition resulted in a significant decrease of accuracy, while the congruent condition led to a significant increase in accuracy compared to baseline accuracy. In the control group, the incongruent condition resulted in a decrease in accuracy, while the congruent condition did not significantly increase the accuracy. Visual exploration analysis showed that patients fixated significantly less on the face and tended to fixate more on the gesturing hands compared to controls. CONCLUSION: Co-speech gestures play an important role for aphasic patients as they modulate comprehension. Incongruent gestures evoke significant interference and deteriorate patients' comprehension. In contrast, congruent gestures enhance comprehension in aphasic patients, which might be valuable for clinical and therapeutic purposes.
Resumo:
A relationship between motor ability and cognitive performance has been previously reported. This study aimed to investigate the association between movement and cognitive performance at 1 and 4 years corrected age of children born less than 1000 g, and whether developmental testing of movement at 1 year is predictive of cognitive performance at 4 years. Motor development was assessed at both ages using the neurosensory motor developmental assessment (NSMDA) and motor development was classified as normal, or minimal, mild, moderate-severe dysfunction. Cognitive performance was assessed on the Griffith Mental Developmental Scale at 1 year and McCarthy Scales of Children's Abilities at 4 years. Subjects included 198 children of birthweight less than 1000 g. Of these 132 children returned for follow-up at the corrected ages of both 1 and 4 years. The 66 children not included had a slight increase in gestational age, while the mothers were younger and had a lower level of education. A significant association was found between NSMDA group classification at 1 year and cognitive performance at both 1 and 4 years (p
Resumo:
Cervical joint position error (JPE) has been used as a measure of cervical afferent input to detect disturbances in sensori-motor control as a possible contributor to a neck pain syndrome. This study aimed to investigate the relationship between cervical JPE, balance and eye movement control. It was of particular interest whether assessment of cervical ME alone was sufficient to signal the presence of disturbances in the two other tests. One hundred subjects with persistent whiplash-associated disorders (WADs) and 40 healthy controls subjects were assessed on measures of cervical JPE, standing balance and the smooth pursuit neck torsion test (SPNT). The results indicated that over all subjects, significant but weak-to-moderate correlations existed between all comfortable stance balance tests and both the SPNT and rotation cervical ME tests. A weak correlation was found between the SPNT and right rotation cervical JPE. An abnormal rotation cervical JPE score had a high positive prediction value (88%) but low sensitivity (60%) and specificity (54%) to determine abnormality in balance and or SPNT test. The results suggest that in patients with persistent WAD, it is not sufficient to measure ME alone. All three measures are required to identify disturbances in the postural control system. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Trafficking in persons has attracted seemingly boundless attention over the last two decades and the work aimed at fighting it is best understood when this cause is contextualized against the backdrop of other social forces—economic, social, and cultural—shaping contemporary nonprofit activities. This project argues that the paid and volunteer labor that takes place in metro Washington, D.C., to combat trafficking in persons can be understood as both a movement and an industry. In addition to arguing that anti-trafficking work is part of a nonprofit industrial complex that situates activist and advocacy work firmly inside state and economic institutions, this project is concerned with the ways in which trafficking work and workers conduct their business collectively. As an organizational study, it identifies the key players in the D.C. region focused on this issue and traces their interactions, collaborations, and cooperation. Significantly, this project suggests that despite variations in objectives, methods, priorities, and characterizations of trafficking, thirty organizations in metro D.C. working on this issue “get along” because they are bound by the benign common goal of raising awareness. Awareness, in this context, is best understood as both a cultural anchor facilitating cohesion and as a social currency allowing groups to opt into joint efforts. The dissertation concludes that organizations centralize awareness in their collective activities over more drastic priorities around which consensus would need to be gained. This is a lost opportunity for making sense of the ways that individual bodies—men, women, and children—experience not just trafficking, but the world around them.