993 resultados para Agro-meteorological data


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The best irrigation management depends on accurate estimation of reference evapotranspiration (ET0) and then selection of the appropriate crop coefficient for each phenological stage. However, the evaluation of water productivity on a large scale can be done by using actual evapotranspiration (ETa), determined by coupling agrometeorological and remote sensing data. This paper describes methodologies used for estimating ETa for 20 centerpivots using three different approaches: the traditional FAO crop coefficient (K-c) method and two remote sensing algorithms, one called SEBAL and other named TEIXEIRA. The methods were applied to one Landsat 5 Thematic Mapper image acquired in July 2010 over the Northwest portion of the Sao Paulo State, Brazil. The corn, bean and sugar cane crops are grown under center pivot sprinkler irrigation. ET0 was calculated by the Penman-Monteith method with data from one automated weather station close to the study site. The results showed that for the crops at effective full cover, SEBAL and TEIXEIRA's methods agreed well comparing with the traditional method. However, both remote sensing methods overestimated ETa according to the degree of exposed soil, with the TEIXEIRA method presenting closer ETa values with those resulted from the traditional FAO K-c method. This study showed that remote sensing algorithms can be useful tools for monitoring and establishing realistic K-c values to further determine ETa on a large scale. However, several images during the growing seasons must be used to establish the necessary adjustments to the traditional FAO crop coefficient method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A 0.125 degree raster or grid-based Geographic Information System with data on tsetse, trypanosomosis, animal production, agriculture and land use has recently been developed in Togo. This paper addresses the problem of generating tsetse distribution and abundance maps from remotely sensed data, using a restricted amount of field data. A discriminant analysis model is tested using contemporary tsetse data and remotely sensed, low resolution data acquired from the National Oceanographic and Atmospheric Administration and Meteosat platforms. A split sample technique is adopted where a randomly selected part of the field measured data (training set) serves to predict the other part (predicted set). The obtained results are then compared with field measured data per corresponding grid-square. Depending on the size of the training set the percentage of concording predictions varies from 80 to 95 for distribution figures and from 63 to 74 for abundance. These results confirm the potential of satellite data application and multivariate analysis for the prediction, not only of the tsetse distribution, but more importantly of their abundance. This opens up new avenues because satellite predictions and field data may be combined to strengthen or substitute one another and thus reduce costs of field surveys.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent interest in the validation of general circulation models (GCMs) has been devoted to objective methods. A small number of authors have used the direct synoptic identification of phenomena together with a statistical analysis to perform the objective comparison between various datasets. This paper describes a general method for performing the synoptic identification of phenomena that can be used for an objective analysis of atmospheric, or oceanographic, datasets obtained from numerical models and remote sensing. Methods usually associated with image processing have been used to segment the scene and to identify suitable feature points to represent the phenomena of interest. This is performed for each time level. A technique from dynamic scene analysis is then used to link the feature points to form trajectories. The method is fully automatic and should be applicable to a wide range of geophysical fields. An example will be shown of results obtained from this method using data obtained from a run of the Universities Global Atmospheric Modelling Project GCM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analysis of meteorological records from four stations (Chittagong, Cox’s Bazar, Rangamati, Sitakunda) in south-eastern Bangladesh show coherent changes in climate over the past three decades. Mean maximum daily temperatures have increased between 1980 and 2013 by ca. 0.4 to 0.6°C per decade, with changes of comparable magnitude in individual seasons. The increase in mean maximum daily temperature is associated with decreased cloud cover and wind speed, particularly in the pre- and post-monsoon seasons. During these two seasons, the correlation between changes in maximum temperature and clouds is between -0.5 and -0.7; the correlation with wind speed is weaker although similar values are obtained in some seasons. Changes in mean daily minimum (and hence mean) temperature differ between the northern and southern part of the basin: northern stations show a decrease in mean daily minimum temperature during the post-monsoon season of between 0.2 and 0.5°C per decade while southern stations show an increase of ca. 0.1 to 0.4°C per decade during the pre-monsoon and monsoon seasons. In contrast to the significant changes in temperature, there is no trend in mean or total precipitation at any station. However, there is a significant increase in the number of rain days at the northern sites during the monsoon season, with an increase per decade of 3 days in Sitakunda and 7 days at Rangamati. These climate changes could have a significant impact on the hydrology of the Halda Basin, which supplies water to Chittagong and is the major pisciculture centre in Bangladesh.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Determining the variability of carbon dioxide emission from soils is an important task as soils are among the largest sources of carbon in biosphere. In this work the temporal variability of bare soil CO2 emissions was measured over a 3-week period. Temporal changes in soil CO2 emission were modelled in terms of the changes that occurred in solar radiation (SR), air temperature (T-air), air humidity (AR), evaporation (EVAP) and atmospheric pressure (ATM) registered during the time period that the experiment was conducted. The multiple regression analysis (backward elimination procedure) includes almost all the meteorological variables and their interactions into the final model (R-2 = 0.98), but solar radiation showed to be the one of the most relevant variables. The present study indicates that meteorological data could be taken into account as the main forces driving the temporal variability of carbon dioxide emission from bare soils, where microbial activity is the sole source of carbon dioxide emitted. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The municipality of Petrolina, located in the semi-arid region of Brazil, is highlighted as an important agricultural growing region, however the irrigated areas have cleared natural vegetation inducing a loss of biodiversity. To analyze the contrast between these two ecosystems the large scale values of biomass production (BIO), evapotranspiration (ET) and water productivity (WP) were quantified. Monteithś equation was applied for estimating the absorbed photosynthetically active radiation (APAR), while the new SAFER (Simple Algorithm For Evapotranspiration Retrieving) algorithm was used to retrieve ET. The water productivity (WP) was analysed by the ratio of BIO by ET at monthly time scale with four bands of MODIS satellite images together with agrometeorological data for the year of 2011. The period with the highest water productivity values were from March to April in the rainy period for both irrigated and not irrigated conditions. However the largest ET rates were in November for irrigated crops and April for natural vegetation. More uniformity of the vegetation and water variables occurs in natural vegetation, evidenced by the lower values of standard deviation when comparing to irrigated crops, due to the different crop stages, cultural and irrigation managements. The models applied with MODIS satellite images on a large scale are considered to be suitable for water productivity assessments and for quantifying the effects of increasing irrigated areas over natural vegetation on regional water consumption in situations of quick changing land use pattern. © 2012 SPIE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The first International Polar Year (IPY) was an international effort to perform continous meteorological and geophysical observations over a time period of two years (1882-1883). Eleven nations established twelve research stations in the Arctic along with thirteen auxilary stations. Two stations were operated on the southern hemisphere (South Georgia and Tierra del Fuego). The data were published in 26 volumes on 8700+ pages of reports, descriptions, tables and graphs in total. The list of meteorological parameters includes temperature, wind, pressure, clouds, precipitation, evaporation, humidity and radiation. In the light of Global Change and the intensification of observations and continous measurements in both polar regions, long-time series increase in importance. The observations of the first IPY from the 19th century enable us to extend the data from the 20th century even more back into the past. In the occasion of the fourth IPY (2007-2009) WDC-MARE decided to digitize the complete set of meteorological data in full hourly resolution and publish it in its reports and make it available in Open Access via the data library PANGAEA.