351 resultados para Aglantha digitale
Resumo:
Early summer in the Arctic with extensive ice melt and break-up represents a dramatic change for sympagic-pelagic fauna below seasonal sea ice. As part of the International Polar Year-Circumpolar Flaw Lead system study (IPY-CFL), this investigation quantified zooplankton in the meltwater layer below landfast ice and remaining ice fauna below melting ice during June (2008) in Franklin Bay and Darnley Bay, Amundsen Gulf, Canada. The ice was in a state of advanced melt, with fully developed melt ponds. Intense melting resulted in a 0.3- to 0.5-m-thick meltwater layer below the ice, with a strong halocline to the Arctic water below. Zooplankton under the ice, in and below the meltwater layer, was sampled by SCUBA divers. Dense concentrations (max. 1,400 ind./m**3) of Calanus glacialis were associated with the meltwater layer, with dominant copepodid stages CIV and CV and high abundance of nauplii. Less abundant species included Pseudocalanus spp., Oithona similis and C. hyperboreus. The copepods were likely feeding on phytoplankton (0.5-2.3 mg Chl-a/m**3) in the meltwater layer. Ice amphipods were present at low abundance (<10 ind./m**2) and wet biomass (<0.2 g/m**2). Onisimus glacialis and Apherusa glacialis made up 64 and 51% of the total ice faunal abundance in Darnley Bay and Franklin Bay, respectively. During early summer, the autochthonous ice fauna becomes gradually replaced by allochthonous zooplankton, with an abundance boom near the meltwater layer. The ice amphipod bust occurs during late stages of melting and break-up, when their sympagic habitat is diminished then lost.
Resumo:
Seasonal changes in the zooplankton composition of the glacially influenced Kongsfjorden, Svalbard (79°N, 12°E), and its adjacent shelf were studied in 2002. Samples were collected in the spring, summer and autumn in stratified hauls (according to hydrographic characteristics), by means of a 0.180-mm Multi Plankton Sampler. A strong front between the open sea and the fjord waters was observed during the spring, preventing water mass exchange, but was not observed later in the season. The considerable seasonal changes in zooplankton abundance were related to the seasonal variation in hydrographical regime. The total zooplankton abundance during the spring (40-2010 individuals/m**3) was much lower than in the summer and autumn (410-10,560 individuals/m**3). The main factors shaping the zooplankton community in the fjord include: the presence of a local front, advection, the flow pattern and the decreasing depth of the basin in the inner fjord. Presumably these factors regulate the gross pattern of zooplankton density and distribution, and override the importance of biological processes. This study increased our understanding of seasonal processes in fjords, particularly with regard to the strong seasonal variability in the Arctic.
Resumo:
A technique of zooplankton net sampling at night in the Kandalaksha and Dvinskii Bays and during the full tide in the Onezhskii Bay of the White Sea allowed us to obtain "clean" samples without considerable admixtures of terrigenous particulates. Absence of elements-indicators of the terrigenous particulates (Al, Ti, and Zr) in the EDX spectra allows to conclude that ash composition of tested samples is defined by constitutional elements comprising organic matter and integument (chitin, shells) of plankton organisms. A quantitative assessment of accumulation of ca. 40 chemical elements by zooplankton based on a complex of modern physical methods of analysis is presented. Values of the coefficient of the biological accumulation of the elements (Kb) calculated for organic matter and the enrichment factors (EF) relative to Clarke concentrations in shale are in general determined by mobility of the chemical elements in aqueous solution, which is confirmed by calculated chemical speciation of the elements in the inorganic subsystem of surface waters of Onezhskii Bay.
Resumo:
In recent years a global increase in jellyfish (i.e. Cnidarians and Ctenophores) abundance and a rise in the recurrence of jellyfish outbreak events have been largely debated, but a general consensus on this matter has not been achieved yet. Within this debate, it has been generally recognised that there is a lack of reliable data that could be analysed and compared to clarify whether indeed jellyfish are increasing throughout the world ocean as a consequence of anthropogenic impact and hydroclimatic variability. Here we describe different jellyfish data sets produced within the EU program EUROBASIN, which have been assembled with the aim of presenting an up to date overview on the diversity and standing stocks of North Atlantic jellyfish. Abundance and species composition were determined in samples collected in the epipelagic layer (0- 200m), using a net well adapted to quantitatively catching gelatinous zooplankton. The samples were collected in spring-summer (April-August) 2010-2013, in inshore and offshore North Atlantic waters, between 59-68LatN and 62W-5ELong. Jellyfish were also identified and counted in samples opportunistically collected by other sampling gears in the same region and in two coastal stations in the Bay of Biscay and in the Gulf of Cadiz. Continuous Plankton Recorder (CPR) samples collected in 2009-2012 were re-analysed with the aim of identifying the time and location of jellyfish blooms across the North Atlantic basin.
Resumo:
The spatial variation in mesozooplankton biomass, abundance and species composition in relation to oceanography was studied in different climatic regimes (warm Atlantic vs. cold Arctic) in northern Svalbard waters. Relationships between the zooplankton community and various environmental factors (salinity, temperature, sampling depth, bottom depth, sea-ice concentrations, algal biomass and bloom stage) were established using multivariate statistics. Our study demonstrated that variability in the physical environment around Svalbard had measurable effect on the pelagic ecosystem. Differences in bottom depth and temperature-salinity best explained more than 40% of the horizontal variability in mesozooplankton biomass (DM/m**2) after adjusting for seasonal variability. Salinity and temperature also explained much (21% and 15%, respectively) of the variability in mesozooplankton vertical distribution (ind./m**3) in August. Algal bloom stage, chlorophyll-a biomass, and depth stratum accounted for additional 17% of the overall variability structuring vertical zooplankton distribution. Three main zooplankton communities were identified, including Atlantic species Fritillaria borealis, Oithona atlantica, Calanus finmarchicus, Themisto abyssorum and Aglantha digitale; Arctic species Calanus glacialis, Gammarus wilkitzkii, Mertensia ovum and Sagitta elegans; and deeper-water inhabitants Paraeuchaeta spp., Spinocalanus spp., Aetideopsis minor, Mormonilla minor, Scolecithricella minor, Gaetanus (Gaidius) tenuispinus, Ostracoda, Scaphocalanus brevicornis and Triconia borealis. Zooplankton biomasses in Atlantic- and Arctic-dominated water masses were similar, but biological ''hot-spots'' were associated with Arctic communities.
Resumo:
Ongoing zooplankton research at the Plymouth Marine Laboratory has established a time series of zooplankton species since 1988 at L4, a coastal station off Plymouth. Samples were collected by vertical net hauls (WP2 net, mesh 200 µm; UNESCO 1968) from the sea floor (approximately 50 m) to the surface and stored in 4% formalin. Much of the zooplankton analysis has been to the level of "major taxonomic groups" only, and a number of different analysts have participated over the years. The level of expertise has generally been consistent, but the user should be aware that levels of taxonomic discrimination may vary during the course of the dataset. The dominant calanoid copepods are generally well discriminated to species throughout. Calanus has not been routinely examined for species determination, the assumption being that the local population is entirely composed of Calanus helgolandicus. In certain years there has been a particular interest in Temora stylifera, Centropages cherchiae and other species reflected in the dataset. The lack of records in other previous years does not necessarily reflect species absence. We view it as essential for all users of L4 plankton data to establish and maintain contact with the nominated current data originators as well as fully consulting the metadata. While not impinging on free data access, this ensures that this large, species-rich but slightly complex species database is being used in the correct way, and any potential issues with the data are clarified. Furthermore, a proper dialogue with these local experts on the time series will enable where appropriate the most recent sampling timepoints to be used. The data can be downloaded from BODC or from doi:10.1594/PANGAEA.778092 as files for each year by searching for "L4 zooplankton". The most comprehensive dataset is the version downloadable directly from this page. The entire set of zooplankton samples is stored at the Plymouth Marine Laboratory in buffered formalin, and may be available for further taxonomic analysis on request.
Resumo:
The study site was located in the Disko Bay off Qeqertarsuaq, western Greenland. Due to land-connected sea ice coverage during winter, 2 sampling sites were combined. At the first site in winter (21 February to 23 March 2008), sampling was conducted through a hole in the ice at ca. 65 to 160 m depth approximately 0.5 nautical mile (n mile) south of Qeqertarsuaq (69° 14' N, 53° 29' W). In spring and summer (9 April to 18 July), sampling was done at a monitoring station 1 n mile south from Qeqertarsuaq (69° 14' N, 53° 23' W) at 300 m depth. Sampling was carried out between 10:00 and 17:00 h. During sampling from the ice, mesozooplankton was collected using a modified WP-2 net (45 µm) equipped with a closing mechanism (Hydrobios). Samples were collected in 3 depth strata (0-50, 50-100, and 100-150 m). During ship-based sampling, mesozooplankton was collected with a multinet (50 µm) equipped with a flow meter (Multinet, Hydrobios type midi), and 2 additional depth strata (150-200m and 200-250 m) were included. In addition to the seasonal study one diurnal investigation with sampling every 6 h was conducted from 29 April at 12:00 h to 30 April 30 at 12:00 h. Samples were immediately preserved in buffered formalin (5% final concentration) for later analyses. Biomass values of the different copepod species were calculated based on measurements of prosome length, and length/weight relationships. Two regressions for Calanus spp. were established for biomass calculations: one applicable prior to and during the phytoplankton bloom until 4 May, and another from 9 May onwards.